【題目】如圖,平行四邊形中,過作于,交于,過作于,交于,連結、.
求證:;
當四邊形滿足什么條件時,四邊形是菱形?證明你的結論.
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了滿足學生借閱圖書的需求,計劃購買一批新書,為此,該校圖書管理員對一周內本校學生從圖書館借出各類圖書的數量進行了統(tǒng)計,結果如圖所示,請你根據統(tǒng)計圖中的信息,解答下列問題:
(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖
(2)該校學生最喜歡借閱哪類圖書?并求出此類圖書所在扇形的圓心角的度數.
(3)該校計劃購買新書共600本,若按扇形統(tǒng)計圖中的百分比來相應地確定漫畫、科普、文學、其它這四類圖書的購買量,問應購買這四類圖書各多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了進一步了解某校初中學生的體質健康狀況,對八年級的部分學生進行了體質監(jiān)測,同時統(tǒng)計了每個人的得分(假設這個得分為,滿分為50分).體質檢測的成績分為四個等級:優(yōu)秀、良好、合格、不合格.根據調查結果繪制了下列兩福不完整的統(tǒng)計圖,請你根據統(tǒng)計圖提供的信息回答以下問題:
(1)補全上面的扇形統(tǒng)計圖和條形統(tǒng)計圖;
(2)被測試的部分八年級學生的體質測試成績的中位數落在 等級:
(3)若該校八年級有1400名學生,估計該校八年級體質為“不合格”的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,DE垂直平分斜邊AB,分別交AB、BC于D、E.若∠CAB=∠B+30°,CE=2cm.
求:(1)∠AEB 度數.
(2)BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOP為等邊三角形,A(0,2),點B為y軸上一動點,以BP為邊作等邊△PBC,延長CA交x軸于點E.
(1)求證:OB=AC;
(2)∠CAP的度數是;
(3)當B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;
(4)在(3)的條件下,在y軸上存在點Q,使得△AEQ為等腰三角形,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.
(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;
(II)如圖②,當α=60°時,求點C′的坐標;
(III)當點B,D′,C′共線時,求點C的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)
【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設反比例函數的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.
【題型】解答題
【結束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O是等邊三角形ABC的外接圓,點D在圓上,在CD的延長線上有一點F,使DF=DA,AE∥BC交CF于E.
(1)求證:EA是⊙O的切線;
(2)求證:BD=CF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com