【題目】在1~7月份,某地的蔬菜批發(fā)市場(chǎng)指導(dǎo)菜農(nóng)生產(chǎn)和銷(xiāo)售某種蔬菜,并向他們提供了這種蔬菜每千克售價(jià)與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤(rùn)最大的月份可能是(
A.1月份
B.2月份
C.5月份
D.7月份

【答案】C
【解析】解:設(shè)x月份出售時(shí),每千克售價(jià)為y1元,每千克成本為y2元. 根據(jù)圖甲設(shè)y1=kx+b,
,

∴y1=﹣ x+7.
根據(jù)圖乙設(shè)y2=a(x﹣6)2+1,
∴4=a(3﹣6)2+1,
∴a= ,
∴y2= (x﹣6)2+1.
∵y=y1﹣y2 ,
∴y=﹣ x+7﹣[ (x﹣6)2+1],
∴y=﹣ x2+ x﹣6.
∵y=﹣ x2+ x﹣6,
∴y=﹣ (x﹣5)2+
∴當(dāng)x=5時(shí),y有最大值,即當(dāng)5月份出售時(shí),每千克收益最大.
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,Rt△PAB的直角頂點(diǎn)P(3,4)在函數(shù)y= (x>0)的圖象上,頂點(diǎn)A、B在函數(shù)y= (x>0,0<t<k)的圖象上,PA∥x軸,連接OP,OA,記△OPA的面積為SOPA , △PAB的面積為SPAB , 設(shè)w=SOPA﹣SPAB . ①求k的值以及w關(guān)于t的表達(dá)式;
②若用wmax和wmin分別表示函數(shù)w的最大值和最小值,令T=wmax+a2﹣a,其中a為實(shí)數(shù),求Tmin

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把直角△ABC的斜邊AC放在定直線l上,按順時(shí)針的方向在直線l上轉(zhuǎn)動(dòng)兩次,使它轉(zhuǎn)到△A2B1C2的位置,設(shè)AB= ,BC=1,則頂點(diǎn)A運(yùn)動(dòng)到點(diǎn)A2的位置時(shí),點(diǎn)A所經(jīng)過(guò)的路線為(
A.( + )π
B.( + )π
C.2π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB和DE是直立在地面上的兩根立柱,AB=5m,某一時(shí)刻AB在陽(yáng)光下的投影BC=3m.
(1)請(qǐng)你在圖中畫(huà)出此時(shí)DE在陽(yáng)光下的投影;
(2)在測(cè)量AB的投影時(shí),同時(shí)測(cè)量出DE在陽(yáng)光下的投影長(zhǎng)為6m,請(qǐng)你計(jì)算DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《雁棲塔》位于懷柔“北京雁棲湖國(guó)際會(huì)都中心”所處大島西南部突出部位的半島上,是“北京雁棲湖國(guó)際會(huì)都中心”的標(biāo)志性建筑,也是整個(gè)雁棲湖風(fēng)景區(qū)的標(biāo)志性建筑. 某校數(shù)學(xué)課外小組為了測(cè)量《雁棲塔》(底部可到達(dá))的高度,準(zhǔn)備了如下的測(cè)量工具:①平面鏡,②皮尺,③長(zhǎng)為1米的標(biāo)桿,④高為1.5m的測(cè)角儀(測(cè)量仰角、俯角的儀器).第一組選擇用②④做測(cè)量工具;第二組選用②③做測(cè)量工具;第三組利用自身的高度并選用①②做測(cè)量工具,分別畫(huà)出如下三種測(cè)量方案示意圖.

(1)請(qǐng)你判斷如下測(cè)量方案示意圖各是哪個(gè)小組的,在測(cè)量方案示意圖下方的括號(hào)內(nèi)填上小組名稱.
(2)選擇其中一個(gè)測(cè)量方案示意圖,寫(xiě)出求《雁棲塔》高度的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),下列說(shuō)法中不正確的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α= ,有以下的結(jié)論:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時(shí),BD為8或 ;④0<BE≤5,其中正確的結(jié)論是(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整. 原題:如圖1,在△ABC中,點(diǎn)D、E、Q分別在AB、AC、BC上,且DE∥BC,AQ交DE于點(diǎn)P,求證:

(1)嘗試探究:在圖1中,由DP∥BQ得△ADP△ABQ(填“≌”或“∽”),則 = , 同理可得 = ,從而
(2)類比延伸:如圖2,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交DE于M、N兩點(diǎn),若AB=AC=1,則MN的長(zhǎng)為
(3)拓展遷移:如圖3,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交于DE于M、N兩點(diǎn),AB<AC,求證:MN2=DMEN.

查看答案和解析>>

同步練習(xí)冊(cè)答案