【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),下列說(shuō)法中不正確的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

【答案】D
【解析】解:∵D、E分別是AB、AC的中點(diǎn), ∴DE∥BC,DE= BC,
= ,△ADE∽△ABC,
,
∴A,B,C正確,D錯(cuò)誤;
故選:D.
【考點(diǎn)精析】本題主要考查了三角形中位線定理和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y= 的圖象如圖所示,以下結(jié)論: ①常數(shù)m<﹣1;
②在每個(gè)象限內(nèi),y隨x的增大而增大;
③若A(﹣1,h),B(2,k)在圖象上,則h<k;
④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.
其中正確的是(

A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在1~7月份,某地的蔬菜批發(fā)市場(chǎng)指導(dǎo)菜農(nóng)生產(chǎn)和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價(jià)與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤(rùn)最大的月份可能是(
A.1月份
B.2月份
C.5月份
D.7月份

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AE是弦,直線CG與⊙O相切于點(diǎn)C,CG∥AE,CG與BA的延長(zhǎng)線交于點(diǎn)G,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,交AE于點(diǎn)F.
(1)求證: ;
(2)若∠EAB=30°,CF=a,寫(xiě)出求四邊形GAFC周長(zhǎng)的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的圓O與AD,AC分別交于點(diǎn)E,F(xiàn),且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有三張背面完全相同的紙牌A,B,C,其中正面分別畫(huà)有三種不同的幾何圖形,小華將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張,請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求摸出的兩張紙牌面上所畫(huà)幾何圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,⊙O的半徑為4,則這個(gè)正六邊形的邊心距OM和 的長(zhǎng)分別為(
A.2,
B. ,π
C.2
D.2 ,

查看答案和解析>>

同步練習(xí)冊(cè)答案