精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為_____

【答案】2

【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)

∵∠C=90°,AC=BC=6cm,

∴△ABC為直角三角形,

∴∠A=∠B=45°,

∴△APE和△PBD為等腰直角三角形,

∴PE=AE=AP=tcm,BD=PD,

∴CE=AC﹣AE=(6﹣t)cm,

∵四邊形PECD為矩形,

∴PD=EC=(6﹣t)cm,

∴BD=(6﹣t)cm,

∴QD=BD﹣BQ=(6﹣2t)cm,

在Rt△PCE中,PC2=PE2+CE2=t2+(6﹣t)2,

在Rt△PDQ中,PQ2=PD2+DQ2=(6﹣t)2+(6﹣2t)2,

∵四邊形QPCP′為菱形,

∴PQ=PC,

∴t2+(6﹣t)2=(6﹣t)2+(6﹣2t)2,

∴t1=2,t2=6(舍去),

∴t的值為2.

故答案為:2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】寫出所有滿足下列條件的數:

(1)大于-且小于的所有整數;

(2)小于的所有正整數;

(3)絕對值小于的所有整數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了對學生進行多元化的評價,某中學決定對學生進行綜合素質評價設該校中學生綜合素質評價成績?yōu)?/span>x分,滿分為100分評價等級與評價成績x分之間的關系如下表:

中學生綜合素質評價成績

中學生綜合素質評價等級

A

B

C

D

現隨機抽取該校部分學生的綜合素質評價成績,整理繪制成圖、圖兩幅不完整的統(tǒng)計圖請根據相關信息,解答下列問題:

(1)在這次調查中,一共抽取了______名學生,圖中等級為D級的扇形的圓心角等于______

(2)補全圖中的條形統(tǒng)計圖;

(3)若該校共有1200名學生,請你估計該校等級為C級的學生約有多少名.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知雙曲線y= 經過點B(3 ,1),點A是雙曲線第三象限上的動點,過B作BC⊥y軸,垂足為C,連接AC.
(1)求k的值;
(2)若△ABC的面積為6 ,求直線AB的解析式;
(3)在(2)的條件下,寫出反比例函數值大于一次函數值時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,動點S從點A出發(fā),沿線段AB運動至點B后,立即按原路返回,點S在運動過程中速度不變,則以點B為圓心,線段BS長為半徑的圓的面積m與點S的運動時間t之間的函數關系圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對角線BD于點E,F

(1)求證:AEB≌△CFD

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,EBC的中點,PAB上的任意一點,連接PE,將PE繞點P逆時針旋轉得到PQ,過A點,D點分別作BC的垂線,垂足分別為MN

AM的值;

連接AC,若PAB的中點,求PE的長;

若點Q落在ABAD邊所在直線上,請直接寫出BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑CD=10,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8,則AC的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=ax2+ x+c的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C的坐標為(8,0),連接AC.

(1)請直接寫出二次函數y=ax2+ x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時N的坐標.

查看答案和解析>>

同步練習冊答案