【題目】已知:點C在∠AOB的一邊OA上,過點C的直線DE∥O B.做∠ACD的平分線CF,過點C畫CF的垂線CG,如圖所示.
(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度數(shù);
(Ⅱ)求證:CG平分∠OCD;
(Ⅲ)延長FC交OB于點H,用直尺和三角板過點O作OR⊥FH,垂足為R,過點O
作FH的平行線交ED于點Q.先補全圖形,再證明∠COR=∠GCO,∠CQO=∠CHO.
【答案】(1)110°;(2)詳見解析;(3)詳見解析.
【解析】
(Ⅰ)根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),可以求得∠ECF的度數(shù);
(Ⅱ)根據(jù)角平分線的性質(zhì)、平角的定義可以求得∠OCG和∠DCG的關(guān)系,從而可以證明結(jié)論成立.
(Ⅲ)畫出圖形,只要證明CG∥OR,四邊形OHCQ是平行四邊形即可解決問題;
(Ⅰ)解:∵直線DE∥OB,CF平分∠ACD,∠O=40°,
∴∠ACE=∠O,∠ACF=∠FCD,
∴∠ACE=40°,
∴∠ACD=140°,
∴∠ACF=70°,
∴∠ECF=∠ECA+∠ACF=40°+70°=110°;
(Ⅱ)證明:∵CF平分∠ACD,CG⊥CF,∠ACD+∠OCD=180°,
∴∠ACF=∠FCD,∠FCG=90°,
∴∠FCD+∠DCG=90°,∠ACF+∠OCG=90°,
∴∠DCG=∠OCG,
∴CG平分∠OCD.
(Ⅲ)解:圖形如圖所示,
理由:∵GC⊥FH,OR⊥FH,
∴GC∥OR,
∴∠COR=∠GCO.
∵CQ∥OH,OQ∥CH,
∴四邊形OHCQ是平行四邊形,
∴∠CQO=∠OHC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在你標有刻度的直線l上,從點A開始,以AB=1為直徑畫半圓,記為第1個半圓;以BC=2為直徑畫半圓,記為第2個半圓;以CD=4為直徑畫半圓,記為第3個半圓;以DE=8為直徑畫半圓,記為第4個半圓…,按此規(guī)律,則第4個半圓的面積是第3個半圓面積的倍,第n個半圓的面積為 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,
(1)求BF與FC的長;
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個新款水杯,水杯不盛水時按如圖2所示的位置放置,這樣可以快速晾干杯底,干凈透氣;將圖2的主體部分的抽象成圖3,此時杯口與水平直線的夾角35°,四邊形ABCD可以看作矩形,測得AB=10cm,BC=8cm,過點A作AF⊥CE,交CE于點F.
(1)求∠BAF的度數(shù);(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求點A到水平直線CE的距離AF的長(精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專買店銷售A,B兩種型號的新能源汽車,上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的件價各為多少萬元;
每輛A型車和B型車的售價分別是x萬元,y萬元.
根據(jù)題意,列方程組
解這個方程組,得x= ,y=
答: .
(2)有一家公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不超過130萬元,求這次購進B型車最多幾輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡÷(-),然后再從-2<x≤2的范圍內(nèi)選取一個合適的x的整數(shù)值代入求值
【答案】4.
【解析】試題分析:先將原分式進行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡后的代數(shù)式中即可得出結(jié)論.
試題解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x為整數(shù),∴x=2.
將x=2代入中得: ==4.
考點:分式的化簡求值.
【題型】解答題
【結(jié)束】
21
【題目】解方程:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E是BC的中點,連接并延長DE交AB的延長線于點F.
(1)求證:△CDE≌△BFE;
(2)若CD=3cm,請求出AF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示表示王勇同學騎自行車離家的距離與時間之間的關(guān)系,王勇9點離開家,15點回家,請結(jié)合圖象,回答下列問題:
到達離家最遠的地方是什么時間?離家多遠?
他一共休息了幾次?休息時間最長的一次是多長時間?
在哪些時間段內(nèi),他騎車的速度最快?最快速度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com