【題目】如圖所示表示王勇同學(xué)騎自行車離家的距離與時(shí)間之間的關(guān)系,王勇9點(diǎn)離開家,15點(diǎn)回家,請(qǐng)結(jié)合圖象,回答下列問(wèn)題:

到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

他一共休息了幾次?休息時(shí)間最長(zhǎng)的一次是多長(zhǎng)時(shí)間?

在哪些時(shí)間段內(nèi),他騎車的速度最快?最快速度是多少?

【答案】(1)30(2)1(3)15

【解析】

根據(jù)折線統(tǒng)計(jì)圖可知,王勇同學(xué)到達(dá)離家最遠(yuǎn)的地方距離他家是30千米;

統(tǒng)計(jì)圖中,折線持平的就是王勇同學(xué)休息的時(shí)間,由圖可見,王勇同學(xué)共休息了2次,可用進(jìn)行計(jì)算即可得到王勇同學(xué)每次休息的時(shí)間;

王勇同學(xué)從11:0012:00之間和13:0015:00之間,所騎車的速度最快,列式解答即可得到答案.

王勇同學(xué)到達(dá)離家最遠(yuǎn)的地方中午12時(shí),距離他家是30千米;

王勇同學(xué)共休息了2次,休息時(shí)間最長(zhǎng)的一次是小時(shí)的時(shí)間;

王勇同學(xué)從11001200之間和13001500之間,所騎車的速度最快,最快速度是15千米小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)C∠AOB的一邊OA上,過(guò)點(diǎn)C的直線DE∥O B.做∠ACD的平分線CF,過(guò)點(diǎn)CCF的垂線CG,如圖所示.

(Ⅰ)若∠AOB=40°,求∠ACD∠ECF的度數(shù);

(Ⅱ)求證:CG平分∠OCD;

(Ⅲ)延長(zhǎng)FCOB于點(diǎn)H,用直尺和三角板過(guò)點(diǎn)OOR⊥FH,垂足為R,過(guò)點(diǎn)O

FH的平行線交ED于點(diǎn)Q.先補(bǔ)全圖形,再證明∠COR=∠GCO,∠CQO=∠CHO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂點(diǎn)和點(diǎn)O均在網(wǎng)格圖的格點(diǎn)上,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1
(1)請(qǐng)畫出△A1B1C1
(2)以點(diǎn)O為圓心, 為半徑作⊙O,請(qǐng)判斷直線AA1與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】投擲一枚質(zhì)地均勻的正方體骰子.

(1)下列說(shuō)法中正確的有 (填序號(hào))

①向上一面點(diǎn)數(shù)為1點(diǎn)和3點(diǎn)的可能性一樣大;

②投擲6次,向上一面點(diǎn)數(shù)為1點(diǎn)的一定會(huì)出現(xiàn)1次;

③連續(xù)投擲2次,向上一面的點(diǎn)數(shù)之和不可能等于13.

(2)如果小明連續(xù)投擲了10次,其中有3次出現(xiàn)向上一面點(diǎn)數(shù)為6點(diǎn),這時(shí)小明說(shuō):投擲正方體骰子,向上一面點(diǎn)數(shù)為6點(diǎn)的概率是你同意他的說(shuō)法嗎?說(shuō)說(shuō)你的理由.

(3)為了估計(jì)投擲正方體骰子出現(xiàn)6點(diǎn)朝上的概率,小亮采用轉(zhuǎn)盤來(lái)代替骰子做實(shí)驗(yàn).下圖是一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,請(qǐng)你將轉(zhuǎn)盤分為2個(gè)扇形區(qū)域,分別涂上紅、白兩種顏色,使得轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)后,指針落在紅色區(qū)域的概率與投擲正方體骰子出現(xiàn)6點(diǎn)朝上的概率相同.(友情提醒:在轉(zhuǎn)盤上用文字注明顏色和扇形圓心角的度數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,直線EFAB、CD分別相交于點(diǎn)E、F.

(1)如圖1,若∠1=120°,2=60°,求證ABCD;

(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、PEB、PFD三個(gè)角之間的關(guān)系;

①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=PEB+∠PFD;

請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)

解:如圖2,過(guò)點(diǎn)PMNAB,

則∠EPM=PEB_____

ABCD(已知),MNAB(作圖)

MNCD_____

∴∠MPF=PFD

∴∠_____+∠_____=PEB+∠PFD(等式的性質(zhì))

即∠EPF=PEB+∠PFD

②當(dāng)點(diǎn)P在圖3的位置時(shí),∠EPF、PEB、PFD三個(gè)角之間有何關(guān)系并證明.

③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫出∠EPF、PEB、PFD三個(gè)角之間的關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長(zhǎng)和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示的一塊地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1
(2)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有紅球、黃球共20個(gè),這些除顏色外都相同,將口袋中的球攪拌均勻,從中隨機(jī)摸出一球,記下顏色后再放回口袋,不斷重復(fù)這一過(guò)程,共摸了200次,發(fā)現(xiàn)其中有161次摸到紅球.則這個(gè)口袋中紅球數(shù)大約有(
A.4個(gè)
B.10個(gè)
C.16個(gè)
D.20個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案