【題目】共享單車被譽(yù)為“新四大發(fā)明”之一,如圖1所示是某公司2017年向信陽市場提供的一種共享自行車的實(shí)物圖,車架檔AC與CD的長分別為45 cm,60 cm,AC⊥CD,座桿CE的長為20 cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.

(1)求車架檔AD的長;

(2)求車座點(diǎn)E到車架檔AB的距離.(結(jié)果精確到1 cm,參考數(shù)據(jù):sin75°≈0.965 9,cos75°≈0.258 8,tan75°≈3.732 1)

【答案】(1) 75 cm ;(2) 63 cm.

【解析】

(1)在Rt△ACD中,利用勾股定理求解即可;

(2)過點(diǎn)EEF⊥AB于點(diǎn)F,在Rt△AEF中,利用正弦值求解即可.

解:(1)∵AC⊥CD,AC=45 cm,CD=60 cm,

∴AD==75(cm),

車架檔AD的長是75 cm;

(2)如圖,過點(diǎn)EEF⊥AB于點(diǎn)F,

∵AC=45 cm,EC=20 cm,∠EAB=75°,

∴EF=AE·sin75°=(45+20)×0.965 9≈63(cm),

車座點(diǎn)E到車架檔AB的距離是63 cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣2a32(﹣5a3+1

2)(4x3y+6x2y2xy3÷xy

3

4)(2x+3)(2x3)﹣2x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過程:

解:設(shè)a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學(xué)因式分解的結(jié)果是否徹底:________(徹底不徹底”);

(2)若不徹底,請(qǐng)你直接寫出因式分解的最后結(jié)果:________;

(3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.

1請(qǐng)寫出一個(gè)你學(xué)過的特殊四邊形中是等對(duì)邊四邊形的圖形的名稱;

2如圖,在中,點(diǎn)分別在上,設(shè)相交于點(diǎn),若,.請(qǐng)你寫出圖中一個(gè)與相等的角,并猜想圖中哪個(gè)四邊形是等對(duì)邊四邊形;

3中,如果是不等于的銳角,點(diǎn)分別在上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykxb的圖象與x軸交點(diǎn)為 A30,與y軸交點(diǎn)為 B ,且與正比例函數(shù)的圖象交于點(diǎn)Cm,4).

1)求點(diǎn)C 的坐標(biāo);

2)求一次函數(shù)ykxb的表達(dá)式;

3)利用圖象直接寫出當(dāng)x取何值時(shí),kxb

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PC交O于A,C兩點(diǎn),AB是O的直徑,AD平分PAB交O于點(diǎn)D,過D作DE垂直PA,垂足為E.

(1)求證:DE是⊙O的切線;

(2)若AE=1,AC=4,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,拋物線y=ax2+bx+2x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.D為坐標(biāo)平面第四象限內(nèi)一點(diǎn),且使得△ABD△ABC全等.

(1)求拋物線的表達(dá)式.

(2)請(qǐng)直接寫出點(diǎn)D的坐標(biāo),并判斷四邊形ACBD的形狀.

(3)如圖2,將△ABD沿y軸的正方形以每秒1個(gè)單位長度的速度平移,得到△A′B′D′,A′B′BC交于點(diǎn)E,A′D′AB交于點(diǎn)F.連接EF,AB′,EFAB′交于點(diǎn)G.設(shè)運(yùn)動(dòng)的時(shí)間為t(0≤t≤2)秒.

當(dāng)直線EF經(jīng)過拋物線的頂點(diǎn)T時(shí),請(qǐng)求出此時(shí)t的值;

請(qǐng)直接寫出點(diǎn)G經(jīng)過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y kx b 的圖象與 x 軸交點(diǎn)為 A3, 0,與 y 軸交點(diǎn)為 B ,且與正比例函數(shù)的圖象交于點(diǎn)Cm,4.

1)求點(diǎn)C 的坐標(biāo);

2)求一次函數(shù) y kx b 的表達(dá)式;

3)若點(diǎn) P y 軸上一點(diǎn),且BPC 的面積為 6,請(qǐng)直接寫出點(diǎn) P 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案