【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
【答案】見解析
【解析】
試題分析:(1)求出∠B=∠ACB,根據(jù)三角形外角性質(zhì)求出∠FAC=2∠ACB=2∠DAC,推出∠DAC=∠ACB,根據(jù)ASA證明△ABC和△CDA全等;
(2)推出AD∥BC,AB∥CD,得出平行四邊形ABCD,根據(jù)∠B=60°,AB=AC,得出等邊△ABC,推出AB=BC即可.
證明:(1)∵AB=AC,
∴∠B=∠ACB,
∵∠FAC=∠B+∠ACB=2∠ACB,
∵AD平分∠FAC,
∴∠FAC=2∠CAD,
∴∠CAD=∠ACB,
∵在△ABC和△CDA中
,
∴△ABC≌△CDA(ASA);
(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,
∴∠DAC=∠ACB,
∴AD∥BC,
∵∠BAC=∠ACD,
∴AB∥CD,
∴四邊形ABCD是平行四邊形,
∵∠B=60°,AB=AC,
∴△ABC是等邊三角形,
∴AB=BC,
∴平行四邊形ABCD是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( )
A. 2x2·2xy=4x3y4 B. 3x2y-5xy2=-2x2y
C. x-1÷x-2=x-1 D. (-3a-2)(-3a+2)=9a2-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. 3a 2 2a 6a 2 B. a 2 3 a 6 C. a 4 a 2 2 D. a 12 a 2 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江蘇衛(wèi)視《最強(qiáng)大腦》第三季正在熱播,據(jù)不完全統(tǒng)計該節(jié)目又創(chuàng)收視新高,全國約有85600000人在收看,全國觀看《最強(qiáng)大腦》第三季的人數(shù)用科學(xué)計數(shù)法表示為________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果汽車向南行駛30米記作+30米,那么-50米表示( )
A. 向東行駛50米 B. 向西行駛50米 C. 向南行駛50米 D. 向北行駛50米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板的直角重合放置,如圖1所示,
(1)圖1中∠BEC的度數(shù)為_________
(2)三角板△AOB的位置保持不動,將三角板△COD繞其直角頂點O順時針方向旋轉(zhuǎn):
①當(dāng)旋轉(zhuǎn)至圖2所示位置時,恰好OD∥AB,求此時∠AOC的大;
②若將三角板△COD繼續(xù)繞O旋轉(zhuǎn),直至回到圖1位置,在這一過程中,是否會存在△COD其中一邊能與AB平行?如果存在,請你畫出圖形,并直接寫出相應(yīng)的∠AOC的大小;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com