【題目】甲、乙兩座城市的中心火車站A,B兩站相距360km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54km/h,當(dāng)動車到達(dá)B站時,特快列車恰好到達(dá)距離A站135km處的C站.則動車的平均速度是 , 特快列車的平均速度是 .
【答案】90km/h;144km/h
【解析】解:設(shè)特快列車的平均速度為xkm/h,則動車的速度為(x+54)km/h,
由題意,得: = ,
解得:x=90,
經(jīng)檢驗得:x=90是這個分式方程的解.
x+54=144.
答:特快列車的平均速度為90km/h,動車的速度為144km/h.
所以答案是:90km/h,144km/h.
【考點精析】本題主要考查了分式方程的應(yīng)用的相關(guān)知識點,需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,B、C、E三點共線,連接DC,點F為CD上的一點,連接AF.
(1)若BE平分∠AED,求證:AC=EC;
(2)若∠DAF=∠AEC,求證:BE=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
(1)根據(jù)如圖2,寫出一個代數(shù)恒等式: .
(2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(3)小明同學(xué)用如圖3中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z= .
(4)兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成如圖4.請你根據(jù)如圖中圖形的關(guān)系,寫出一個代數(shù)恒等式,并寫出推導(dǎo)過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于方程x2+x﹣1=0的說法中正確的是( )
A.該方程有兩個相等的實數(shù)根
B.該方程有兩個不相等的實數(shù)根,且它們互為相反數(shù)
C.該方程有一根為
D.該方程有一根恰為黃金比例
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某一路口某一時段的汽車流量,小明同學(xué)10天中在同一時段統(tǒng)計通過該路口的汽車數(shù)量(單位:輛),將統(tǒng)計結(jié)果繪制成如下折線統(tǒng)計圖:
由此估計一個月(30天)該時段通過該路口的汽車數(shù)量超過200輛的天數(shù)為( )
A.9
B.10
C.12
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,的角平分線與邊交于點,的角平分線交直線于點.
(1)若點在四邊形的內(nèi)部,
①如圖,若,,,則_______°;
②如圖,試探索、、之間的數(shù)量關(guān)系,并將你的探索過程寫下來.
(2)如圖,若點是四邊形的外部,請你直接寫出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,AB=3,點E在線段AB上,AE=1連結(jié)DE,DE的垂直平分線交DE于點P,交DC的延長線于點Q,PQ交BC于點G,連結(jié)EQ,EQ交BC于點F,連結(jié)GE.
(1)求證:△ADE∽△PQD;
(2)求線段CQ的長;
(3)求∠EGB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)的立方根是______________.
(2)已知某正數(shù)的兩個平方根分別是a+3和2a-15,b的立方根是-2,則3a+b的算術(shù)平方根是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com