【題目】下列關(guān)于方程x2+x﹣1=0的說法中正確的是( )
A.該方程有兩個相等的實數(shù)根
B.該方程有兩個不相等的實數(shù)根,且它們互為相反數(shù)
C.該方程有一根為
D.該方程有一根恰為黃金比例

【答案】D
【解析】解:A、△=12+4×1>0,∴程x2+x﹣1=0有兩個不相等的實數(shù)根,此選項錯誤;

B、方程兩根的和為﹣1,它們不互為相反數(shù),此選項錯誤;

C、把x= 代入x2+x﹣1得x2+x≠0,故此選項錯誤;

D、把x= 代入x2+x﹣1得x2+x=0,故此選項正確.

所以答案是:D.

【考點精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根,以及對根與系數(shù)的關(guān)系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),已知:在中,,直線經(jīng)過點,直線直線,垂足分別為點.證明:

(2)如圖(2),將(1)中的條件改為:在中,,、三點都在直線上,且,其中為任意銳角或鈍角.請問結(jié)論是否仍然成立?如成立;請你給出證明;若不成立,請說明理由.

3)拓展與應(yīng)用:如圖(3),是直線上的兩動點、三點互不重合),點平分線上的一點,且均為等邊三角形,連接、,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠A=1,∠2+3=180°,∠BDE=65°,

1ABDF平行嗎?說明理由;

2)求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿ADEFGB的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護學(xué)生的身體健康,某中學(xué)課桌椅的高度都是按一定的關(guān)系配套設(shè)計的,下表列出5套符合條件的課桌椅的高度.

椅子高度xcm

45

42

39

36

33

桌子高度ycm

84

79

74

69

64

1)假設(shè)課桌的高度為ycm,椅子的高度為xcm,請確定yx的函數(shù)關(guān)系式;

2)現(xiàn)有一把高38cm的椅子和一張高73.5cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩座城市的中心火車站A,B兩站相距360km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54km/h,當(dāng)動車到達B站時,特快列車恰好到達距離A站135km處的C站.則動車的平均速度是 , 特快列車的平均速度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點,與x軸相交于點C.已知tan∠BOC= ,點B的坐標(biāo)為(m,n).

(1)求反比例函數(shù)的解析式;
(2)請直接寫出當(dāng)x<m時,y2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOP=∠BOP15°,PCOA,PDOA,若PC4,則PD的長為_____

查看答案和解析>>

同步練習(xí)冊答案