-0.333,,,, ,3.1415, 2.010101…(相鄰兩個(gè)1之間有1個(gè)0). 在上面各數(shù)中是無(wú)理數(shù)的有(  )

   A.3個(gè)     B.4個(gè)      C. 5個(gè)      D. 6個(gè)                                        

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書(shū)中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在下列各數(shù)中是無(wú)理數(shù)的有( 。
-0.333…,
4
5
,-π,3.1415,2.010010001…(相鄰兩個(gè)1之間0的個(gè)數(shù)逐漸增加)
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在0,
327
,0.333…,-
27
,-0.3030030003…(每?jī)蓚(gè)3之間依次多1個(gè)0),
1
3
,3.14;這些數(shù)中,無(wú)理數(shù)的個(gè)數(shù)為(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在下列各數(shù)中無(wú)理數(shù)有( 。
-0.333…,
4
,
5
,-π,3π,3.1415,2.010101…(相鄰兩個(gè)1之間有1個(gè)0),76.0123456…(小數(shù)部分由相繼的正整數(shù)組成).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先閱讀,后解題:
把循環(huán)小數(shù)化成分?jǐn)?shù)的方法:
設(shè)x=0.
3
=0.333
…,則10x=3.333…,
即:10x=3+0.333…,
所以10x=3+0.
3
10x=3+x9x=3,即x=
1
3

所以0.
3
=
1
3
.根據(jù)上述提供的方法把下列兩個(gè)循環(huán)小數(shù)化成分?jǐn)?shù).
(1)0.
2
;              (2)1.
4

查看答案和解析>>

同步練習(xí)冊(cè)答案