有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹碓节呌诜(wěn)定,事實(shí)上,這些數(shù)越來越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.
分析:首先確定式子
(  )
3
+
(  )
5
+
(  )
7
的取值范圍,再將不等式去分母,得出121.275<35•( 。+21•( 。+15•(  )<122.22,利用除法運(yùn)算的性質(zhì)得出符合要求的值.
解答:解:由題意可知1.155<
(  )
3
+
(  )
5
+
(  )
7
<1.164.
∴121.275<35•( 。+21•(  )+15•( 。122.22.
由于(  )的數(shù)都是整數(shù),
∴35•( 。+21•( 。+15•(  )=122,而122被3除余2,122被5除余2,122被7除余3,
故三個(gè)括號(hào)內(nèi)由左到右依次填:1、2、3,即
1
3
+
2
5
+
3
7
=1.16.
點(diǎn)評(píng):此題主要考查了怎樣估計(jì)一元二次方程的近似值,通過閱讀材料獲取信息是近幾年中考中熱點(diǎn)問題,已注意細(xì)心閱讀發(fā)現(xiàn)規(guī)律才能解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若一個(gè)邊長都是整數(shù)的三角形周長是15cm,則滿足條件的三角形有
7
7
種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省儀征市大儀中學(xué)七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

若一個(gè)三角形三邊都是整數(shù),且兩邊長是2和3,則這個(gè)三角形第三邊可以是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省儀征市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

若一個(gè)三角形三邊都是整數(shù),且兩邊長是2和3,則這個(gè)三角形第三邊可以是______.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《28.4 方程的近似解》2010年習(xí)題精選(解析版) 題型:解答題

有一個(gè)算式分子都是整數(shù),滿足≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+,用3+代替x,得x=3+=3+.反復(fù)若干次用3+代替x,就得到x=形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的對(duì)整個(gè)式子的值的影響將越來越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把忽略不計(jì),例如,當(dāng)忽略x=3+中的時(shí),就得到x=3;當(dāng)忽略x=3+中的時(shí),就得到x=3+;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹碓节呌诜(wěn)定,事實(shí)上,這些數(shù)越來越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

同步練習(xí)冊(cè)答案