用長8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

設(shè)窗的高度為xm,寬為(
8-2x
3
)m,
故S=
x(8-2x)
3

3S
2
=x(4-x)
,
即S=-
2
3
(x-2)
2
+
8
3

∴當(dāng)x=2m時,S最大值為
8
3
m2
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)y=-
3
16
x2+3的圖象與x軸正半軸交于點A,與y軸交于點B,過點A、B分別作y軸、x軸的平行線交直線y=kx于點M、N.
(1)用k表示S△OBN:S△MAO的值.
(2)當(dāng)S△OBN=
1
4
S△MAO時,求圖象過點M、N、B的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直),(如圖)如果拋物線的最高點M離墻1米,離地面
40
3
米,則水流下落點B離墻距離OB是(  )
A.2米B.3米C.4米D.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點,與y軸交于點C,A點坐標(biāo)為(-1,0)
(1)求m的值和點B的坐標(biāo);
(2)過A、B、C的三點的⊙M交y軸于另一點D,設(shè)P為弧CBD上的動點P(P不與C、D重合),連接AP交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請求出常數(shù)k;如果不存在,請說明理由;
(3)連接DM并延長交BC于N,交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=80時,y=40;x=70時,y=50.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中∠B=90°,AB=6cm,BC=8cm,點P從點A開始沿AB邊向點B以1cm∕s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)幾秒鐘,使△PBQ的面積等于8cm2?在移動過程中,△PBQ的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C(0,4),頂點為(1,
9
2
).
(1)求拋物線的函數(shù)表達式;
(2)設(shè)拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標(biāo);
(3)若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EFAC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示是二次函數(shù)y=-x2+4x圖象上的一段,其中0≤x≤4、若矩形ABCD的兩個頂點A,B落在x軸上,另外兩個頂點C,D落在函數(shù)圖象上,則矩形ABCD的周長能否恰好為8?若能,請求出C,D兩點坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為2的⊙C與x軸的正半軸交于點A,與y軸的正半軸交于點B,點C的坐標(biāo)為(1,0).若拋物線y=-
3
3
x2+bx+c過A、B兩點.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得∠PBO=∠POB?若存在,求出點P的坐標(biāo);若不存在說明理由;
(3)若點M是拋物線(在第一象限內(nèi)的部分)上一點,△MAB的面積為S,求S的最大(小)值.

查看答案和解析>>

同步練習(xí)冊答案