如圖,半徑為2的⊙C與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(1,0).若拋物線y=-
3
3
x2+bx+c過(guò)A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使得∠PBO=∠POB?若存在,求出點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由;
(3)若點(diǎn)M是拋物線(在第一象限內(nèi)的部分)上一點(diǎn),△MAB的面積為S,求S的最大(小)值.
(1)如答圖1,連接CB.
∵BC=2,OC=1
∴OB=
4-1
=
3

∴B(0,
3

將A(3,0),B(0,
3
)代入二次函數(shù)的表達(dá)式
-
3
3
×9+3b+c=0
c=
3
,解得
b=
2
3
3
c=
3
,
∴y=-
3
3
x2+
2
3
3
x+
3


(2)存在.
如答圖2,作線段OB的垂直平分線l,與拋物線的交點(diǎn)即為點(diǎn)P1,P2
∵B(0,
3
),O(0,0),
∴直線l的表達(dá)式為y=
3
2
.代入拋物線的表達(dá)式,
得-
3
3
x2+
2
3
3
x+
3
=
3
2
;
解得x1=1+
1
2
10
或x2=1-
1
2
10
,
∴P1(1-
10
2
,
3
2
)或P2(1+
10
2
3
2
).

(3)如答圖3,作MH⊥x軸于點(diǎn)H.
設(shè)M(xm,ym),
則S△MAB=S梯形MBOH+S△MHA-S△OAB
=
1
2
(MH+OB)•OH+
1
2
HA•MH-
1
2
OA•OB
=
1
2
(ym+
3
)xm+
1
2
(3-xm)ym-
1
2
×3×
3

=
3
2
xm+
3
2
ym-
3
2
3

∵ym=-
3
3
xm2+
2
3
3
xm+
3
,
∴S△MAB=
3
2
xm+
3
2
(-
3
3
xm2+
2
3
3
xm+
3
)-
3
2
3

=-
3
2
xm2+
3
2
3
xm
=-
3
2
(xm-
3
2
2+
9
8
3

∴當(dāng)xm=
3
2
時(shí),S△MAB取得最大值,最大值為
9
8
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過(guò)點(diǎn)A(-3,0)和點(diǎn)B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F,與拋物線在第二象限交于點(diǎn)G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時(shí),△BDE的面積最大;
(3)已知一定點(diǎn)M(-2,0).問(wèn):是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱(chēng)軸及點(diǎn)A的坐標(biāo);
(2)在平面直角坐標(biāo)系xoy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接CA與拋物線的對(duì)稱(chēng)軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2的外公切線,A、B為切點(diǎn),且∠ACB=90°.以AB所在直線為軸,過(guò)點(diǎn)C且垂直于AB的直線為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問(wèn)這條拋物線的頂點(diǎn)是否落在兩圓連心線O1O2上?如果在,請(qǐng)證明;如果不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,拋物線y=x2-x-2過(guò)A、B、C三點(diǎn),在對(duì)稱(chēng)軸上存在點(diǎn)P,以P、A、C為頂
點(diǎn)三角形為直角三角形.則點(diǎn)P的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)C1
(1)求拋物線的對(duì)稱(chēng)軸及點(diǎn)C、C1的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱(chēng)軸上,點(diǎn)P在拋物線上,以點(diǎn)C、C1、P、Q為頂點(diǎn)的四邊形是平行四邊形,求所有平行四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),已知點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B、C在y軸上,BC=8,AB=AC,直線AB與x軸相交于點(diǎn)D.
(1)求點(diǎn)C、D的坐標(biāo);
(2)求圖象經(jīng)過(guò)A、C、D三點(diǎn)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用長(zhǎng)8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個(gè)窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,矩形的窗戶分成上、下兩部分,用9米長(zhǎng)的塑鋼制作這個(gè)窗戶的窗框(包括中間檔),設(shè)窗寬x(米),則窗的面積y(平方米)用x表示的函數(shù)關(guān)系式為_(kāi)_____;要使制作的窗戶面積最大,那么窗戶的高是______米,窗戶的最大面積是______平方米.

查看答案和解析>>

同步練習(xí)冊(cè)答案