【題目】如圖,四邊形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,則四邊形ABCD的面積為___________

【答案】16

【解析】

延長ABDC,兩線交于O,求出OB=BC,OD=OA,OA=AD,BC=OC,設(shè)BC=OC=x,則BO=x,解直角三角形得出方程,求出x,再分別求出AODBOC的面積即可.

延長ABDC,兩線交于O,

∵∠C=90°,ABC=135°,

∴∠OBC=45°,BCO=90°,

∴∠O=45°,

∵∠A=90°,

∴∠D=45°,

OB=BC,OD=OA,OA=AD,BC=OC,

設(shè)BC=OC=x,則BO=x,

CD=6,AB=2,

6+x=x+2),

解得:x=6-2

OB=6-4,BC=OC=6-2,OA=AD=2+6-4=6-2,

S四邊形ABCD=SOAD-SOBC

=OAAD-BCOC

=

=16,

故答案為:16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在甲、乙兩名同學(xué)中選拔一人參加襄陽廣播電臺(tái)舉辦“國學(xué)風(fēng),少年頌”襄陽首屆少年兒童經(jīng)典誦讀大賽.在相同的測試條件下,兩人3次測試成績(單位:分)如下:甲:79,86,82;乙:88,79,90.從甲、乙兩人3次的成績中各隨機(jī)抽取一次成績進(jìn)行分析,求抽到的兩個(gè)人的成績都大于80分的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場服裝部分為了解服裝的銷售情況,統(tǒng)計(jì)了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計(jì)的這組銷售額的數(shù)據(jù),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

該商場服裝營業(yè)員的人數(shù)為 ,圖①中m的值為 ;

求統(tǒng)計(jì)的這組銷售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線為直線AB、CD之間的一點(diǎn).

如圖1,若,則 ______ ;

如圖2,若,則 ______ ;

如圖3,若,則之間有什么等量關(guān)系?請猜想證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo). ②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°

(1) 求證:四邊形ABCD是矩形

(2) DE⊥ACBCE,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個(gè)式子只,請你選擇其中兩個(gè)作為題設(shè),剩下的一個(gè)作為結(jié)論,組成一個(gè)真命題并寫出對(duì)應(yīng)的推理過程

題設(shè)已知;______

結(jié)論求證:______

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣ 且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正△ABC的邊長為6,那么能夠完全覆蓋這個(gè)正△ABC的最小圓的半徑是

查看答案和解析>>

同步練習(xí)冊答案