【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y= x+2與x軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是x=﹣ 且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標(biāo);②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標(biāo).
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:①y= 當(dāng)x=0時,y=2,當(dāng)y=0時,x=﹣4,
∴C(0,2),A(﹣4,0),
由拋物線的對稱性可知:點A與點B關(guān)于x=﹣ 對稱,
∴點B的坐標(biāo)為1,0).
②∵拋物線y=ax2+bx+c過A(﹣4,0),B(1,0),
∴可設(shè)拋物線解析式為y=a(x+4)(x﹣1),
又∵拋物線過點C(0,2),
∴2=﹣4a
∴a=
∴y= x2 x+2.
(2)
解:設(shè)P(m, m2 m+2).
過點P作PQ⊥x軸交AC于點Q,
∴Q(m, m+2),
∴PQ= m2 m+2﹣( m+2)
= m2﹣2m,
∵S△PAC= ×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴當(dāng)m=﹣2時,△PAC的面積有最大值是4,
此時P(﹣2,3).
(3)
解:方法一:
在Rt△AOC中,tan∠CAO= 在Rt△BOC中,tan∠BCO= ,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下圖:
①當(dāng)M點與C點重合,即M(0,2)時,△MAN∽△BAC;
②根據(jù)拋物線的對稱性,當(dāng)M(﹣3,2)時,△MAN∽△ABC;
③當(dāng)點M在第四象限時,設(shè)M(n, n2 n+2),則N(n,0)
∴MN= n2+ n﹣2,AN=n+4
當(dāng) 時,MN= AN,即 n2+ n﹣2= (n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
當(dāng) 時,MN=2AN,即 n2+ n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
綜上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以點A、M、N為頂點的三角形與△ABC相似.
方法二:
∵A(﹣4,0),B(1,0),C(0,2),
∴KAC×KBC=﹣1,
∴AC⊥BC,MN⊥x軸,
若以點A、M、N為頂點的三角形與△ABC相似,
則 , ,
設(shè)M(2t,﹣2t2﹣3t+2),
∴N(2t,0),
①|(zhì) |= ,
∴| |= ,
∴2t1=0,2t2=2,
②| |= ,
∴| |=2,∴2t1=5,2t2=﹣3,
綜上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以點A、M、N為頂點的三角形與△ABC相似.
【解析】(1)①先求的直線y= x+2與x軸交點的坐標(biāo),然后利用拋物線的對稱性可求得點B的坐標(biāo);②設(shè)拋物線的解析式為y=y=a(x+4)(x﹣1),然后將點C的坐標(biāo)代入即可求得a的值;(2)設(shè)點P、Q的橫坐標(biāo)為m,分別求得點P、Q的縱坐標(biāo),從而可得到線段PQ= m2﹣2m,然后利用三角形的面積公式可求得S△PAC= ×PQ×4,然后利用配方法可求得△PAC的面積的最大值以及此時m的值,從而可求得點P的坐標(biāo);(3)首先可證明△ABC∽△ACO∽△CBO,然后分以下幾種情況分類討論即可:①當(dāng)M點與C點重合,即M(0,2)時,△MAN∽△BAC;②根據(jù)拋物線的對稱性,當(dāng)M(﹣3,2)時,△MAN∽△ABC; ④當(dāng)點M在第四象限時,解題時,需要注意相似三角形的對應(yīng)關(guān)系.
【考點精析】認真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握二次函數(shù)的最值(如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,則四邊形ABCD的面積為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=-2x與直線l2:y=kx+b在同一平面直角坐標(biāo)系內(nèi)交于點P .
(1)直接寫出不等式-2x>kx+b 的解集 ;
(2)設(shè)直線l2 與x 軸交于點A ,△OAP的面積為12 ,求l2的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正確的結(jié)論是( 。
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是( 。
A.﹣
B.﹣
C.﹣
D.﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com