【題目】請(qǐng)閱讀下列材料:

問題:現(xiàn)有個(gè)邊長(zhǎng)為的正方形,排列形式如圖,在圖中畫出分割線,拼出如圖所示的新正方形.

請(qǐng)你參考.上述做法,解決如下問題:

1)現(xiàn)有個(gè)邊長(zhǎng)為的正方形,排列形式如圖,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,在圖中畫出分割線,并在圖的正方形網(wǎng)格中用實(shí)線畫出拼接成的新正方形;(圖中每個(gè)小正方形的邊長(zhǎng)均為

2)如圖,現(xiàn)有由個(gè)相同小正方形組成的十字形紙板,請(qǐng)?jiān)趫D中畫出分割線,拼出一個(gè)新正方形.

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)面積為10的正方形的邊長(zhǎng)為,可得三個(gè)并列的小正方形的對(duì)角線的長(zhǎng)為

2)根據(jù)面積為8的正方形的邊長(zhǎng)為,可得三個(gè)并列的小正方形的對(duì)角線的長(zhǎng)為.

1)如圖所示即為所求.

2)如圖所示即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點(diǎn),以為直徑的⊙的邊于點(diǎn)、.

(1)求證:四邊形是平行四邊形;

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD為正方形,AB=2,點(diǎn)E為對(duì)角線AC上一動(dòng)點(diǎn),連接DE,過點(diǎn)E作EFDE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.

(1)求證:矩形DEFG是正方形;

(2)探究:CE+CG的值是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由;

(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n)。線段OA=5,E為x軸上一點(diǎn),且.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中放有3個(gè)紅球和5個(gè)白球,乙口袋中放有7個(gè)紅球和9個(gè)白球,所有球除顏色外都相同.充分?jǐn)噭騼蓚(gè)口袋,分別從兩個(gè)口袋中任意摸出一個(gè)球,設(shè)從甲中摸出紅球的概率是(),從乙中摸出紅球的概率是()

(1)()()的值,并比較它們的大小.

(2)將甲、乙兩個(gè)口袋的球都倒入丙口袋,充分?jǐn)噭蚝,設(shè)從丙中任意摸出一球是紅球的概率為().小明認(rèn)為:()()().他的想法正確嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公交車每天的支出費(fèi)用為600元,每天的乘車人數(shù)x(人)與每天利潤(rùn)(利潤(rùn)=票款收入﹣支出費(fèi)用)y(元)的變化關(guān)系如下表所示(每位乘客的乘車票價(jià)固定不變):

x(人)

200

250

300

350

400

Y(元)

200

100

0

100

200

根據(jù)表格中的數(shù)據(jù),回答下列問題:

1)在這個(gè)變化關(guān)系中,自變量是什么?因變量是什么?

2)若要不虧本,該公交車每天乘客人數(shù)至少達(dá)到多少?

3)請(qǐng)你判斷一天乘客人數(shù)為500人時(shí),利潤(rùn)是多少?

4)試寫出該公交車每天利潤(rùn)y(元)與每天乘車人數(shù)x(人)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3x軸交于A、B兩點(diǎn)(AB的左邊),與y軸交于點(diǎn)C.

(1)求出點(diǎn)A、B、C的坐標(biāo).

(2)求SABC

(3)在拋物線上(除點(diǎn)C外),是否存在點(diǎn)N,使得SNAB=SABC , 若存在,求出點(diǎn)N的坐標(biāo),若不 存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形中,,,點(diǎn)上一點(diǎn),點(diǎn)上,且,設(shè)

1)當(dāng)時(shí),如圖2,求的長(zhǎng);

2)設(shè),求關(guān)于的函數(shù)關(guān)系式及其定義域;

3)若是以為腰的等腰三角形,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案