【題目】在平面直角坐標系xOy中,圖形W在坐標軸上的投影長度定義如下:

設點PQ是圖形W上的任意兩點.的最大值為m,則圖形Wx軸上的投影長度=m;若的最大值為n,則圖形Wy軸上的投影長度=n,如下圖,圖形Wx軸上的投影長度==2;y軸上的投影長度==4.

1)已知點A(3,3),B(41).如圖1所示,若圖形WOAB,則=___________ =___________

2)已知點C(4,0),點D在直線y=-2x+6上,若圖形WOCD.=時,求點D的坐標.

3)如圖2所示,已知點A(3,0)B(0,4),將BOA繞點A按順時針方向旋轉得CDA,連接ODBD.若圖形W為點O.A.C.D.B圍成的多邊形圖象,且∠DOA=OBA,直接寫出的值

【答案】1;(2)點D的坐標為(1,4)或(6,-6),(3

【解析】

1)確定出點Ay軸的投影的坐標、點Bx軸上投影的坐標,于是可求得問題的答案;

2)過點PPDx軸,垂足為P.設Dx,-2x+6),則PD=|-2x+6|PC=|4-x|,然后依據(jù),列方程求解即可.

3)分情況討論,當D在第一象限時,由旋轉的性質(zhì)結合∠DOA=OBA,證明三點共線,過CCFOBF,過CCGOAG,設 利用勾股定理列出方程組即可得到答案.當D在第四象限時,過DDFOBF,過DDGOAG,則四邊形為矩形,設 建立方程組求解即可.

解:(1)∵A3,3),

∴點Ay軸上的正投影的坐標為(03).

∴△OABy軸上的投影長度

B4,1),

∴點Bx軸上的正投影的坐標為(4,0).

∴△OABx軸上的投影長度

故答案為:4,3

2)如圖1所示;過點PPDx軸,垂足為P

0≤x≤3時,-2x+6=4, 解得x=1

D14).

如圖2所示:過點DDPx軸,垂足為P

3x≤4時,

所以2x-6=4

解得:x=5(舍去),

如圖3所示,當點DC點右側,x4時,

x=2x-6 可得x=6 ,

D坐標(6,-6),

如圖4所示:當 x0時,-2x+6=4-x,

解得:x=2 舍去,

綜上所述,點D的坐標為(1,4)或(6-6).

3)如圖,當D在第一象限時,

DOA=OBA,

由旋轉可知:

的垂直平分線,

三點共線,

CCFOBF,過CCGOAG,

則四邊形為矩形,

由勾股定理得:

消去得:

(舍去)

如下圖,當點C旋轉到軸的負半軸上,D在第四象限時,

同理可得:的垂直平分線,

DDFOBF,過DDGOAG,

則四邊形為矩形,

同理可得:

消去得:

(舍去)

此時:

綜上:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在單位為1的方格紙上,A1A2A3,A3A4A5,A5A6A7,都是斜邊在x軸上,斜邊長分別為2,4,6的等腰直角三角形,若A1A2A3的頂點坐標分別為A12,0),A211),A300).則依圖中所示規(guī)律,A2020的坐標為( 。

A.2,﹣1010B.2,﹣1008C.1010,0D.1,1009

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線y=kx+x+1過一定點A,坐標系中有點B2,0)和點C,要使以A、O、B、C為頂點的四邊形為平行四邊形,則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ABCD,AB=CD,∠A=D.

1)求證:四邊形ABCD為矩形

2)若點EAB邊上的中點,點FAD邊上一點,∠1=22CF=5,求AF+BC的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:

)若商場預計進貨款為元,則這兩種臺燈各購進多少盞?

)若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從①AB//CD;②AB=CD;③BC//AD;④BC=AD這四個條件中任選兩個,能使四邊形ABCD是平行四邊形的選法有哪幾種,請一一寫出_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】好鄰居超市購進一批面粉,標準質(zhì)量為,現(xiàn)抽取袋樣品進行稱重檢測,為記錄的方便,用表示超過標準的重量,用表示不足標準的重量,結果如下表(單位):

與標準差(

袋數(shù)

3

1)求這袋樣品超出或不足的質(zhì)量為多少?

2)這批面粉的總重量為多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(4,0)、B(1,0)、C(0,3)三點,直線y=mx+n經(jīng)過A(4,0)、C(0,3)兩點.

(1)寫出方程ax2+bx+c=0的解;

(2)若ax2+bx+c>mx+n,寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案