【題目】有這樣一道題:“當(dāng)a2019,b=-3時(shí),求多項(xiàng)式a2b3abb2(4a2b3abb2)(3a2b3ab)5的值”,馬小虎做題時(shí)把a2019題抄成a=-2019,但他做出的結(jié)果卻是正確的,你知道這是怎么回事嗎?請(qǐng)說(shuō)明理由,并求出結(jié)果。

【答案】見解析,13

【解析】

原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,即可作出判斷.

a2b3-ab+b2-4a2b3-ab-b2+3a2b3+ab-5
=a2b3-ab+b2-4a2b3+ab+b2+3a2b3+ab-5
=2b2-5,
∴此整式化簡(jiǎn)后與a的值無(wú)關(guān),
∴馬小虎做題時(shí)把a=2019錯(cuò)抄成a=-2019,但他做出的結(jié)果卻是正確的.
當(dāng)b=-3時(shí),原式=2×-32-5=13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一對(duì)數(shù),如下表,第個(gè)數(shù)比第n個(gè)數(shù)大2(其中n是正整數(shù))

1個(gè)

2個(gè)

3個(gè)

4個(gè)

5個(gè)

……

a

b

c

(1)5個(gè)數(shù)表示為______;第7個(gè)數(shù)表示為_______.

(2)若第10個(gè)數(shù)是5,第11個(gè)數(shù)是8,第12個(gè)數(shù)為9,則a______b_____,c______.

(3)2019個(gè)數(shù)可表示為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

問(wèn)題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過(guò)試驗(yàn)、觀察、類比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

1)用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),

2)用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時(shí),

3)用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

4)用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

綜上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過(guò)程,并把結(jié)果填在表中)

2)分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三

角形?(只需把結(jié)果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問(wèn)題:用根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











問(wèn)題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過(guò)程)其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角三角形ABC中,∠ABC=90°,∠C=30°,AB=4,以B為圓心,BA為半徑作⊙BBC于點(diǎn)D,旋轉(zhuǎn)∠ABD交⊙B于點(diǎn)E、F,連接EFAC、BC邊于點(diǎn)G、H

1)若BEAC,求tanCGH的值;

2)若AG=4,求BEFABC重疊部分的面積;

3BHE是等腰三角形時(shí),∠ABD逆時(shí)針旋轉(zhuǎn)的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用小立方塊搭一個(gè)幾何體,使它從正面和上面看到的形狀如圖所示,從上面看到形狀中小正方形中的字母表示在該位置上小立方塊的個(gè)數(shù),請(qǐng)問(wèn):

1,各表示幾? 答:_____ ,_____;

2)這個(gè)幾何體最少由_____個(gè)小立方塊搭成,最多由____個(gè)小立方塊搭成;

3)能搭出滿足條件的幾何體共有____種情況,其中從左面看這個(gè)幾何體的形狀圖共有____種,請(qǐng)?jiān)谒o網(wǎng)格圖中畫出其中的任意一種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的第一邊長(zhǎng)為a22ab+b2,第二邊比第一邊的3倍少3,三角形的周長(zhǎng)是5a27ab+5b21.

1)求這個(gè)三角形的第三邊長(zhǎng);

2)當(dāng)a=,b=-3時(shí),求第三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CABCF=2AF;DF=DC;tanCAD=;S四邊形CDEF=SABF,其中正確的結(jié)論有( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問(wèn)題:

(1)求證:△BEF∽△DCB;

(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過(guò)點(diǎn)QQG⊥AB,垂足為G,當(dāng)t為何值時(shí),四邊形EPQG為矩形,請(qǐng)說(shuō)明理由;

(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值

(1),其中x=-2,y=1

(2)a2b+3ab2a2b)﹣22ab2a2b),其中(a+12+|b+2|=0

查看答案和解析>>

同步練習(xí)冊(cè)答案