【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
【答案】
(1)解:嘉嘉隨機抽取一張卡片共出現(xiàn)4種等可能結(jié)果,其中抽到的卡片上的數(shù)是勾股數(shù)的結(jié)果有3種,
所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1= ;
(2)解:列表法:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結(jié)果有12種,
其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,
∴P2= = ,
∵P1= ,P2= ,P1≠P2
∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.
【解析】
首先利用列表法列出所有的可能性,然后找出與嘉嘉抽到的勾股數(shù)的可能性,最后利用概率公式進(jìn)行解答即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知.
(1)讀句畫圖:畫的角平分線、交、于點、,且、交于點,過點作交的延長線于.
(2)在(1)的條件下解決下面問題:
①填表
的度數(shù) | |||
的度數(shù) | __________ | ______________ | ______________ |
②根據(jù)圖中的數(shù)據(jù),你發(fā)現(xiàn)無論是什么角,總是__________(填銳角、鈍角或直角).
③若過點作于,你能猜想與之間的數(shù)量關(guān)系嗎?說明理由.(在(1)中的圖上作于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=48°,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2;……;∠An-1BC與∠An-1CD的平分線交于點An,要使∠An的度數(shù)為整數(shù),則n的最大值為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.
(1)如圖①,當(dāng)AE⊥BC時,寫出圖中所有與∠B相等的角: ;所有與∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度數(shù);
②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個均勻的轉(zhuǎn)盤被平均分成六等份,分別標(biāo)有這六個數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)).
(1)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于的概率是多少;
(2)現(xiàn)有兩張分別寫有和的卡片,要隨機轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.
①這三條線段能構(gòu)成三角形的概率是多少?
②這三條線段能構(gòu)成等腰三角形的概率是多少?(注:要求寫出各種可能情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形中,,,,是邊上的中線,過點作垂足為,交線段于點,交于點,連接.
(1)求證:;
(2)探索線段和之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)等于多少度時,點恰好為中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和 個單位長度/秒,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某手機經(jīng)銷商計劃同時購進(jìn)一批甲、乙兩種型號的手機,若購進(jìn)2臺甲型號手機和1臺乙型號手機,共需要資金2800元;若購進(jìn)3臺甲型號手機和2臺乙型號手機,共需要資金4600元.
(1)求甲、乙型號手機每臺進(jìn)價為多少元?
(2)該店計劃購進(jìn)甲、乙兩種型號的手機銷售,預(yù)計用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩種手機共20臺,請問有幾種進(jìn)貨方案?請寫出進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請在圖中標(biāo)明旋轉(zhuǎn)中心P的位置并寫出其坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com