如圖,⊙O的直徑AB=10,C、D是圓上的兩點,且.設(shè)過點D的切線ED交AC的延長線于點F.連接OC交AD于點G.

(1)求證:DF⊥AF.
(2)求OG的長.
(1)證明見解析
(2)OG=。

試題分析:(1)連接BD,根據(jù),可得∠CAD=∠DAB=30°,∠ABD=60°,從而可得∠AFD=90°。
(2)根據(jù)垂徑定理可得OG垂直平分AD,繼而可判斷OG是△ABD的中位線,在Rt△ABD中求出BD,即可得出OG!
解:(1)證明:連接BD,

∵AB是⊙O的直徑,
∴∠CAD=∠DAB=30°,∠ABD=60°。
∵ED是⊙O的切線,∴∠ADF=∠ABD=60°。
∴∠CAD+∠ADF=90°。∴∠AFD=90°。
∴DF⊥AF。
(2)在Rt△ABD中,∠BAD=30°,AB=10,∴BD=5。
,∴OG垂直平分AD。
∴OG是△ABD的中位線,∴OG=BD=。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川瀘州10分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD2=CA•CB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

圓錐的底面半徑是1,側(cè)面積是2π,則這個圓錐的側(cè)面展開圖的圓心角為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知扇形的面積為2π,半徑為3,則該扇形的弧長為   (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,點P在AB的延長線上,PC切半圓O于點C,連接AC.若∠CPA=20°,則∠A=   °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點D,過點D的切線分別交AB、AC的延長線與點E、F.

(1)求證:AF⊥EF.
(2)小強同學通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強同學證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在直角坐標系中放置一個邊長為1的正方形ABCD,將正方形ABCD沿x軸的正方向無滑動的在x軸上滾動,當點A離開原點后第一次落在x軸上時,點A運動的路徑線與x軸圍成的面積為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點P。若,求AC的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若⊙O1和⊙O2相切,且兩圓的圓心距為9,則兩圓的半徑不可能是(     )
A.4和5B.10和1C.7和9 D.9和18

查看答案和解析>>

同步練習冊答案