【題目】直線與反比例函數(shù)的圖像分別交于點和點,與坐標軸分別交于點和點.若點是軸上一動點,當與相似時,則點的坐標為______.
【答案】或
【解析】
將A、B坐標代入反比例函數(shù)解析式求出m、n,然后將A、B坐標代入一次函數(shù)解析式,求出k,b,進而得到直線解析式,再求出C、D坐標,分別討論兩種情況,利用相似比建立方程求解.
解:∵和點在反比例函數(shù)上,
∴,,
解得,
∴,
把,代入直線,得:
,解得,
∴直線
當x=0時,,當時,x=6,
∴C點坐標(0,6),D點坐標(6,0)
∴OC=6,OD=6,
設P點坐標(a,0)
當△COD∽△APD時,如下圖所示,
∵AP⊥x軸,
∴P點橫坐標與A點相同,即a=2,
∴P點坐標為(2,0),
當△COD∽△PAD時,如下圖所示,
,
∵△COD∽△PAD
∵
∴
解得,所以P點坐標為(-2,0)
綜上,P點坐標為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C在BA的延長線上,直線CD與圓O相切于點D,弦DF⊥AB于點E,連接BD,CD=BD=4,則OE的長度為( )
A.B.2C.2D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關(guān)系時,使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
則m的值是_____,當y<5時,x的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊,分別在軸、軸的正半軸上,,是上一點,,,,,分別是線段,上的兩個動點,且始終保持,若為等腰三角形,則的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參照學習函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點:在平面直角坐標系中以自變量的取值為橫坐標,以相應的函數(shù)值為縱坐標,描出相應的點如圖所示:
(1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當時,隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個單位而得到的;
③圖象關(guān)于點______中心對稱.(填點的坐標)
(3)函數(shù)與直線交于點,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校數(shù)學興趣小組為測量校園主教學樓AB的高度,由于教學樓底部不能直接到達,故興趣小組在平地上選擇一點C,用測角器測得主教學樓頂端A的仰角為30°,再向主教學樓的方向前進24米,到達點E處(C,E,B三點在同一直線上),又測得主教學樓頂端A的仰角為60°,已知測角器CD的高度為1.6米,請計算主教學樓AB的高度.(≈1.73,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(4,4)、B(5,0)和原點O.P為二次函數(shù)圖象上的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數(shù)的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com