【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。

A. 12 B. 6 C. 6 D.

【答案】D

【解析】

連接B'B,利用旋轉(zhuǎn)的性質(zhì)和直角三角形的性質(zhì)解答即可.

連接B'B,

∵將ABC繞點C按逆時針方向旋轉(zhuǎn)得到A'B'C,

AC=A'C,AB=A'B,A=CA'B'=60°,

∴△AA'C是等邊三角形,

∴∠AA'C=60°,

∴∠B'A'B=180°-60°-60°=60°,

∵將ABC繞點C按逆時針方向旋轉(zhuǎn)得到A'B'C,

∴∠ACA'=BAB'=60°,BC=B'C,CB'A'=CBA=90°-60°=30°,

∴△BCB'是等邊三角形,

∴∠CB'B=60°,

∵∠CB'A'=30°,

∴∠A'B'B=30°,

∴∠B'BA'=180°-60°-30°=90°,

∵∠ACB=90°,A=60°,AC=6,

AB=12,

A'B=AB-AA'=AB-AC=6,

B'B=6,

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰RtABC,

(1)C點的坐標;

(2)如圖2,Py軸負半軸上一個動點,當P點向y軸負半軸向下運動時,以P為頂點,PA為腰作等腰RtAPD,過DDEx軸于E點,求OPDE的值;

(3)如圖3,已知點F坐標為(2,2),Gy軸的負半軸上沿負方向運動時,RtFGH,始終保持∠GFH=90,FGy軸負半軸交于點G(0,m),FHx軸正半軸交于點H(n,0),當G點在y軸的負半軸上沿負方向運動時,以下兩個結論:①mn為定值;②m+n為定值,其中只有一個結論是正確的,請找出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A(1,4)和點B(m,﹣2).

(1)求一次函數(shù)的關系式;

(2)求△AOB的面積;

(3)觀察圖象,寫出使得y1y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點軸交于點,軸交于點,與軸交于點.下列說法錯誤的是( .

A.B.

C.D.直線的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BEO的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(多選)在同一條道路上,甲車從地到地,乙車從地到地,兩車同時出發(fā),乙車先到達目的地,圖中的折線段表示甲,乙兩車之間的距離(千米)與行駛時間(小時)的函數(shù)關系,下列說法正確的是(

A.甲乙兩車出發(fā)2小時后相遇

B.甲車速度是40千米/小時

C.相遇時乙車距離100千米

D.乙車到地比甲車到地早小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店計劃購進,兩種筆記本共60本,每本種筆記本比種筆記本的利潤高3元,銷售2種筆記本與3種筆記本所得利潤相同,其中種筆記本的進貨量不超過進貨總量的,種筆記本的進貨量不少于30.

1)每本種筆記本與種筆記本的利潤各為多少元?

2)設購進種筆記本本,銷售總利潤為元,文具店應如何安排進貨才能使得最大?

3)實際進貨時,種筆記本進價下降)元.若兩種筆記本售價不變,請設計出筆記本銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家趙爽曾用圖1證明了勾股定理,這個圖形被稱為弦圖”.2002年在北京召開的國際數(shù)學家大會(ICM 2002)的會標(2),其圖案正是由弦圖演變而來.“弦圖是由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形請你根據(jù)圖1解答下列問題:

(1)敘述勾股定理(用文字及符號語言敘述);

(2)證明勾股定理;

(3)若大正方形的面積是,小正方形的面積是,的值.

查看答案和解析>>

同步練習冊答案