【題目】如圖,平面直角坐標系xOy中,直線AC分別交坐標軸于A,C(8,0)兩點,AB∥x軸,B(6,4).
(1)求過B,C兩點的拋物線y=ax2+bx+4的表達式;
(2)點P從C點出發(fā)以每秒1個單位的速度沿線段CO向O點運動,同時點Q從A點出發(fā)以相同的速度沿線段AB向B點運動,其中一個動點到達端點時,另一個也隨之停止運動.設運動時間為t秒.當t為何值時,四邊形BCPQ為平行四邊形;
(3)若點M為直線AC上方的拋物線上一動點,當點M運動到什么位置時,△AMC的面積最大?求出此時M點的坐標和△AMC的最大面積.
【答案】
(1)
解:如圖1,
∵過B(6,4),C(8,0)兩點的拋物線y=ax2+bx+4.
∴ ,
解得 .
∴過B、C三點的拋物線的表達式為y=﹣ x2+ x+4
(2)
解:如圖2,
由題可得:BQ=6﹣t,CP=t.
當BQ∥CP且BQ=CP時,四邊形BCPQ為平行四邊形.
∴6﹣t=t.
解得:t=3.
(3)
解:過點M作x軸的垂線,交AC于點N,如圖3,
設直線AC的解析式為y=kx+4,
則有8k+4=0.
解得:k=﹣ .
∴直線AC的解析式為y=﹣ x+4.
設點M的橫坐標為m,
則有yM=﹣ m2+ m+4,yN=﹣ m+4.
∴MN=yM﹣yN
=(﹣ m2+ m+4)﹣(﹣ m+4)
=﹣ m2+2m.
∴S△AMC=S△AMN+S△CMN
= MNOC
= ×(﹣ m2+2m)×8
=﹣m2+8m
=﹣(m﹣4)2+16.(0<m<8)
∵﹣1<0,
∴當m=4時,S△AMC取到最大值,最大值為16,此時點M的坐標為(4,6).
【解析】(1)用待定系數(shù)法就可求出過B,C三點的拋物線的表達式.(2)若四邊形BCPQ為平行四邊形,則有BQ=CP,從而建立關于t的方程,就可求出t的值.(3)過點M作x軸的垂線,交AC于點N,設點M的橫坐標為m,由S△AMC=S△AMN+S△CMN= MNOC可以得到S△AMC=﹣(m﹣4)2+16.然后利用二次函數(shù)的最值性就可解決問題
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,與y軸交于點C.
(1)求B、C兩點的坐標;
(2)在該拋物線的對稱軸上是否存在點P,使得△PAC的周長最?若存在,求出點P的坐標;若不存在,請說明理由;
(3)拋物線在第二象限內(nèi)是否存在一點Q,使△QBC的面積最大?,若存在,求出點Q的坐標及△QBC的面積最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若a-b=1,則代數(shù)式a2-b2-2b的值為____.
(2)若m+n=4,mn=5,則多項式m3n2+m2n3的值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(﹣2,0)、C(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.
(1)求該二次函數(shù)的解析式;
(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標;若不存在,請說明理由;
(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程x2﹣3x﹣5=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.沒有實數(shù)根
D.無法確定是否有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為2,以DC為底向正方形外作等腰△DEC,連接AE,以AE為腰作等腰△AEF,使得EA=EF,且∠DEC=∠AEF.
(1)求證:△EDC∽△EAF;
(2)求DE·BF的值;
(3)連接CF、AC,當CF⊥AC時,求∠DEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,則下列條件中:①a=10,b=8,c=6;②a2=3,b2=4,c2=5;③a2=(b+c)(b-c);④∠A=2∠B=2∠C。其中能判斷△ABC是直角三角形的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com