【題目】如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.
(1)求證:BF=BC;
(2)若AB=4cm,AD=3cm,求CF的長.
【答案】(1)見解析;(2)CF=cm.
【解析】
(1)要求證BF=BC只要證明∠CFB=∠FCB就可以,從而轉(zhuǎn)化為證明∠BCE=∠BDC就可以;
(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據(jù)三角形的面積等于BDCE=BCDC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問題.
證明:(1)∵四邊形ABCD是矩形,
∴∠BCD=90°,
∴∠CDB+∠DBC=90°.
∵CE⊥BD,
∴∠DBC+∠ECB=90°.
∴∠ECB=∠CDB.
∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
∴∠CFB=∠BCF
∴BF=BC
(2)∵四邊形ABCD是矩形,
∴DC=AB=4(cm),BC=AD=3(cm).
在Rt△BCD中,由勾股定理得BD==5.
又∵BDCE=BCDC,
∴CE=.
∴BE=.
∴EF=BF﹣BE=3﹣.
∴CF=cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結(jié)論:①△DEF≌△DEC;②S△ABE = S△ADF;③AF=AB;④BE=AF.其中正確的結(jié)論是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90,∠ABC=2∠A,點O在AC上,OA=OB,以O為圓心,OC為半徑作圓.
(1)求證:AB是⊙O的切線;
(2)若BC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點 B(﹣1,0),C(2,3),拋物線與y軸的焦點A,與x軸的另一個焦點為D,點M為線段AD上的一動點,設(shè)點M的橫坐標(biāo)為t.
(1)求拋物線的表達式;
(2)過點M作y軸的平行線,交拋物線于點P,設(shè)線段PM的長為1,當(dāng)t為何值時,1的長最大,并求最大值;(先根據(jù)題目畫圖,再計算)
(3)在(2)的條件下,當(dāng)t為何值時,△PAD的面積最大?并求最大值;
(4)在(2)的條件下,是否存在點P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=20,tanB=,點D為BC邊上的動點(D不與點B,C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當(dāng)DE∥AB時(如圖2),求AE的長;
(3)點D在BC邊上運動的過程中,是否存在某個位置,使得DF=CF?若存在,求出此時BD的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( )(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標(biāo)為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側(cè)的一點,且QH⊥x軸于H,當(dāng)以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上一點.F是線段BC延長線上一點,且CF=AE連接BE
(1)發(fā)現(xiàn)問題:如圖①,若E是線段AC的中點,連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系
(2)探究問題:如圖②,若E是線段AC上任意一點,連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系是什么?請證明你的猜想
(3)解決問題:如圖③,若E是線段AC延長線上任意一點,其他條件不變,且∠EBC=30°,AB=3請直接寫出AF的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以每千克8元的價格收購蘋果若干千克,銷售了部分蘋果后,余下的蘋果以每千克降價4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示。請根據(jù)圖象提供的信息完成下列問題:
(1)降價前蘋果的銷售單價是 元/千克;
(2)求降價后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com