【題目】已知拋物線y=﹣+bx+c與y軸交于點C,與x軸的兩個交點分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點P的坐標;
(3)已知點E在x軸上,點F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.
【答案】(1)拋物線的解析式為y=﹣;(2)存在,滿足條件的P點坐標為(﹣4,0),P2(﹣5,﹣3);(3)滿足條件的點E為(﹣7,0)或(﹣1,0)或(,0)或(,0).
【解析】試題分析:(1)因為拋物線經(jīng)過點A(﹣4,0),B(1,0),所以可以設拋物線為y=﹣(x+4)(x﹣1),展開即可解決問題;
(2)先證明∠ACB=90°,點A就是所求的點P,求出直線AC解析式,再求出過點B平行AC的直線的解析式,利用方程組即可解決問題;
(3)分AC為平行四邊形的邊,AC為平行四邊形的對角線討論即可解決問題.
試題解析:解:(1)拋物線的解析式為y=﹣(x+4)(x﹣1),即;
(2)存在.當x=0, =2,則C(0,2),∴OC=2,∵A(﹣4,0),B(1,0),∴OA=4,OB=1,AB=5,當∠PCB=90°時,∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴當點P與點A重合時,△PBC是以BC為直角邊的直角三角形,此時P點坐標為(﹣4,0);
當∠PBC=90°時,PB∥AC,如圖1,設直線AC的解析式為y=mx+n,把A(﹣4,0),C(0,2)代入得: ,解得: ,∴直線AC的解析式為y=x+2,∵BP∥AC,∴直線BP的解析式為y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直線BP的解析式為y=x﹣,解方程組: 得: 或,此時P點坐標為(﹣5,﹣3);
綜上所述,滿足條件的P點坐標為(﹣4,0),P2(﹣5,﹣3);
(3)存在點E,設點E坐標為(m,0),F(n, ),分三種情況討論:
①當AC為邊,CF1∥AE1,易知CF1=3,此時E1坐標(﹣7,0);
②當AC為邊時,AC∥EF,易知點F縱坐標為﹣2,∴ =﹣2,解得n= ,得到F2(,﹣2),F3(,﹣2),根據(jù)中點坐標公式得到: = 或 =,解得m=或,此時E2(,0),E3(,0);
③當AC為對角線時,AE4=CF1=3,此時E4(﹣1,0).
綜上所述滿足條件的點E為(﹣7,0)或(﹣1,0)或(,0)或(,0).
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:
()若商場預計進貨款為元,則這兩種臺燈各購進多少盞?
()若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,CD⊥AB于點D,DA=DC=4,DB=2,AF⊥BC于點F,交DC于點E.
(1)求線段AE的長;
(2)若點G是AC的中點,點M是線段CD上一動點,連結GM,過點G作GN⊥GM交直線AB于點N,記△CGM的面積為S1,△AGN的面積為S2.在點M的運動過程中,試探究:S1與S2的數(shù)量關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商店老板到體育商場批發(fā)籃球、足球、排球共個,得知該體育商場籃球、足球、排球平均每個元,籃球比排球每個多元,排球比足球每個少元.
(1) 求出這三種球每個各多少元;
(2) 經(jīng)決定,該老板批發(fā)了這三種球的任意兩種共個,共花費了1060元,問該老板可能買了哪兩種球?各買了幾個;
(3) 該老板打算將每一種球各提價元后,再進行打折銷售,若排球、足球打八折,籃球打八五折,在(2)的情況下,為獲得最大利潤,他批發(fā)的一定是哪兩種球?各買了幾個?計算并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,點D在直線BC上,E在AC上,且AC=CD,DE=AB.
(1)如圖②,將△ECD沿CB方向平移,使點E落在AB上,得△E1C1D1,求平移的距離;
(2)如圖③,將△ECD繞點C逆時針旋轉,使點E落在AB上,得△E2CD2,求旋轉角∠DCD2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題)如圖①,點D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段AD與CD有什么數(shù)量關系?
(探究)
探究一:如圖②,若∠A=90°,則∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因為BD平分∠ABC,所以AD=CD,理由是: .
探究二:若∠A≠90°,請借助圖①,探究AD與CD的數(shù)量關系并說明理由.
[理論]點D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段AD與CD的數(shù)量關系是 .
[拓展]已知:如圖③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.
求證:BC=AD+BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五一期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品1件和乙商品3件共需240元;購進甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com