【題目】ABC中,CDAB于點(diǎn)D,DA=DC=4DB=2,AFBC于點(diǎn)F,交DC于點(diǎn)E

1)求線段AE的長;

2)若點(diǎn)GAC的中點(diǎn),點(diǎn)M是線段CD上一動點(diǎn),連結(jié)GM,過點(diǎn)GGNGM交直線AB于點(diǎn)N,記CGM的面積為S1,AGN的面積為S2.在點(diǎn)M的運(yùn)動過程中,試探究:S1S2的數(shù)量關(guān)系

【答案】1;(2S1+S2=4,見解析

【解析】

1)先證明ADE≌△CDB,得到DE=DB=2,在RtADE中,利用勾股定理求出AE

2)過點(diǎn)GCDDA的垂直線,垂足分別為P,Q,證明MGP≌△NGQ,所以S1+S2=SAGQ+SCGP= SACD-S四邊形GQDP,即可求解.

1)在ABC中,CDABAFBC

∴∠ADC=AFB=90°

∵∠AED=CEF

∴∠EAD=BCD

ADECDB

∴△ADE≌△CDB

DE=DB=2

AE=

2)在ABC中,CDABDA=DC=4,

點(diǎn)GAC的中點(diǎn)

過點(diǎn)GCDDA的垂直線,垂足分別為P,Q

則,GP=GQ=DA=2

PGQ=90°=GQN=GPM

GNGM

∴∠MGN=90°

∴∠MGP=NGQ

MGP≌△NGQ

S1+S2=SAGQ+SCGP= SACD-S四邊形GQDP=

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對角線、相交于點(diǎn),點(diǎn)、分別是邊、上的點(diǎn),連結(jié)、.若,,,則周長的最小值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題:

已知在平面內(nèi)有兩點(diǎn),,其兩點(diǎn)間的距離公式為;同時,當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點(diǎn)間距離公式可簡化為.

1)已知點(diǎn)A2,4),B-2,1),則AB=__________;

2)已知點(diǎn)C,D在平行于y軸的直線上,點(diǎn)C的縱坐標(biāo)為4,點(diǎn)D的縱坐標(biāo)為-2,則CD=__________;

3)已知點(diǎn)P3,1)和(1)中的點(diǎn)A,B,判斷線段PA,PBAB中哪兩條線段的長是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)如圖,已知△ABC,∠C=Rt∠AC<BC,DBC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.

1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若∠B=37°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=﹣1,且經(jīng)A1,0)、

B0,﹣3)兩點(diǎn).(1)求拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上,是否存在點(diǎn)M,使它到點(diǎn)A的距離與到點(diǎn)B的距離之和最小,如果存在求出點(diǎn)M的坐標(biāo),如果不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形、、、…按如圖所示的方式放置.點(diǎn)、、…和點(diǎn)、、…分別在直線軸上,則點(diǎn)的坐標(biāo)是__________.(為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小亮一家在東昌湖游玩,媽媽在湖心島岸邊P處觀看小亮與爸爸在湖中劃船(如圖).小船從P處出發(fā),沿北偏東60°劃行200米到達(dá)A處,接著向正南方向劃行一段時間到達(dá)B處.在B處小亮觀測媽媽所在的P處在北偏西37°方向上,這時小亮與媽媽相距多少米(精確到米)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,1.41,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個交點(diǎn)分別為A(﹣4,0),B(1,0).

(1)求拋物線的解析式;

(2)已知點(diǎn)P在拋物線上,連接PC,PB,若PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);

(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實(shí)數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱a的根整數(shù),例如:,=3

(1)仿照以上方法計(jì)算:=______;=_____

(2),寫出滿足題意的x的整數(shù)值______

如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2 =1,這時候結(jié)果為1

(3)100連續(xù)求根整數(shù),____次之后結(jié)果為1

(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____

查看答案和解析>>

同步練習(xí)冊答案