【題目】為靚化家園,改善生活環(huán)境,我縣農村實行垃圾分類集中處理.現(xiàn)某村要清理衛(wèi)生死角垃圾,若用甲、乙兩車運送,兩車各運15趟可完成,已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的3.求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

【答案】甲車單獨運完此堆垃圾需運20趟,乙車單獨運完此堆垃圾需運60趟.

【解析】試題分析:設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運3x趟,根據(jù)兩車各運15趟可完成總任務,列方程求解即可.

試題解析:設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運3x趟,

根據(jù)題意得:

,

解得:x=20 ,

經檢驗:x=20是方程的解,且符合題意 ,

20×3=60(趟)

答:甲車單獨運完此堆垃圾需運20趟,乙車單獨運完此堆垃圾需運60趟.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在(ax+3y)與(x﹣y)的積中,不含有xy項,則a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,BA=BC,ABC=40°,ABC的平分線與BC的垂直平分線交于點O,EBC邊上,FAC邊上,將∠A沿直線EF翻折,使點A與點O恰好重合,則∠OEF的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點A(3,0),與y軸交于點B(0,3),點P是x軸上一動點,過點P作x軸的垂線交拋物線于點C,交直線AB于點D,設P(x,0).

(1)求拋物線的函數(shù)表達式;

(2)當0<x<3時,求線段CD的最大值;

(3)在△PDB和△CDB中,當其中一個三角形的面積是另一個三角形面積的2倍時,求相應x的值;

(4)過點B,C,P的外接圓恰好經過點A時,x的值為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點C應選在何處?請在圖中,用尺規(guī)作圖找出所有符合條件的點C.(不寫已知、求作、作法,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x3﹣2x2y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經過點C,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)△OAB是等腰三角形.

查看答案和解析>>

同步練習冊答案