【題目】如圖是二次函數(shù)y=圖象的一部分.其對(duì)稱軸為x=-1,且過(guò)點(diǎn)(-3,0).下列說(shuō)法:(1)abc<0;(2)2a-b=0;(3)4a+2b+c=0;(4)若(-5,),是拋物線上兩點(diǎn),則.其中說(shuō)法正確的是_____ (填序號(hào))

【答案】(1)(2)(4)

【解析】分析:根據(jù)圖象分別求出a、b、c的符號(hào),即可判斷(1),根據(jù)對(duì)稱軸求出b=2a,代入2a-b即可判斷(2),把x=2代入二次函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì)即可判斷(3),求出點(diǎn)(-5,y1)關(guān)于直線x=-1的對(duì)稱點(diǎn)的坐標(biāo),根據(jù)對(duì)稱軸判斷y1y2的大小,即可判斷(4).

詳解:∵二次函數(shù)的圖象開口向上,

a>0,

∵二次函數(shù)的圖象交y軸的負(fù)半軸于一點(diǎn),

c<0,

∵對(duì)稱軸是直線x=-1,

-=-1,

b=2a>0,

abc<0,

故(1)正確;

b=2a,

2a-b=0,

故(2)正確;

∵拋物線的對(duì)稱軸為x=-1,且過(guò)點(diǎn)(-3,0),

∴拋物線與x軸另一交點(diǎn)為(1,0).

∵當(dāng)x>-1時(shí),yx的增大而增大,

∴當(dāng)x=2時(shí)y>0,即4a+2b+c>0,

故(3)錯(cuò)誤;

(-5,y1)關(guān)于直線x=-1的對(duì)稱點(diǎn)的坐標(biāo)是(3,y1),

又∵當(dāng)x>-1時(shí),yx的增大而增大,3>,

y1>y2,

故(4)正確;

故答案為(1)(2)(4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,

1)求點(diǎn)C到直線AB的距離;

2求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等邊ABC的邊長(zhǎng)為4cm,動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿射線BC方向移動(dòng),以AD為邊作等邊ADE

1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,點(diǎn)E能否移動(dòng)至直線AB上?若能,求出此時(shí)BD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;

2)如圖2,在點(diǎn)D從點(diǎn)B開始移動(dòng)至點(diǎn)C的過(guò)程中,以等邊ADE的邊ADDE為邊作ADEF

ADEF的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;

若點(diǎn)M、N、P分別為AEAD、DE上動(dòng)點(diǎn),直接寫出MN+MP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1.2元;超過(guò)10噸時(shí),超過(guò)部分按每噸1.8元收費(fèi),該市某戶居民5月份用水,應(yīng)繳水費(fèi)元.

1)寫出之間的關(guān)系式;

2)某戶居民若5月份用水16噸,應(yīng)繳水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺(tái)階上依次標(biāo)著-5,-21,9,且任意相鄰四個(gè)臺(tái)階上數(shù)的和都相等.

(嘗試)(1)求前4個(gè)臺(tái)階上數(shù)的和是多少?

2)求第5個(gè)臺(tái)階上的數(shù)是多少?

(應(yīng)用)求從下到上前33個(gè)臺(tái)階上數(shù)的和.

(發(fā)現(xiàn))試用含為正整數(shù))的式子表示出數(shù)“-2”所在的臺(tái)階數(shù)(此問直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;

(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABCABC90°,AB3,BC4,點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)QAC的垂線交線段AB(如圖①)或線段AB的延長(zhǎng)線(如圖②)于點(diǎn)P.

1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△AQP∽△ABC;

2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校通過(guò)初評(píng)決定最后從甲、乙、丙三個(gè)班中推薦一個(gè)班為縣級(jí)先進(jìn)班集體,下表是三個(gè)班的五項(xiàng)素質(zhì)考評(píng)得分表。

五項(xiàng)素質(zhì)考評(píng)得分表(單位:分)

班級(jí)

行為規(guī)范

學(xué)習(xí)成績(jī)

校運(yùn)動(dòng)會(huì)

藝術(shù)獲獎(jiǎng)

勞動(dòng)衛(wèi)生

甲班

10

10

6

10

7

乙班

10

8

8

9

8

丙班

9

10

9

6

9

根據(jù)統(tǒng)計(jì)表中的信息回答下列問題:

1)請(qǐng)你補(bǔ)全五項(xiàng)成績(jī)考評(píng)分析表中的數(shù)據(jù):

班級(jí)

平均分

眾數(shù)

中位數(shù)

甲班

8.6

10

乙班

8.6

8

丙班

9

9

2)參照上表中的數(shù)據(jù),你推薦哪個(gè)班為縣級(jí)先進(jìn)班集體?并說(shuō)明理由。

3)如果學(xué)校把行為規(guī)范、學(xué)習(xí)成績(jī)、校運(yùn)動(dòng)會(huì)、藝術(shù)獲獎(jiǎng)、勞動(dòng)衛(wèi)生五項(xiàng)考評(píng)成績(jī)按照32113的比確定班級(jí)的綜合成績(jī),學(xué)生處的李老師根據(jù)這個(gè)綜合成績(jī),繪制了一幅不完整的條形統(tǒng)計(jì)圖,請(qǐng)將這個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,按照這個(gè)成績(jī),應(yīng)推薦哪個(gè)班為縣級(jí)先進(jìn)班集體?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, l1l2,∠1 = 105°,∠2 = 140°,則α = _____________

【答案】65°

【解析】分析:反向延長(zhǎng)CDAE于點(diǎn)F,根據(jù)平行線的性質(zhì)得到根據(jù)三角形外角的性質(zhì)得到即可求出.

詳解:如圖:反向延長(zhǎng)CDAE于點(diǎn)F,

ABCD,

故答案為:

點(diǎn)睛:考查平行線的性質(zhì)和三角形外角的性質(zhì),解題的關(guān)鍵是作出輔助線.

型】填空
結(jié)束】
14

【題目】如圖,ADO的直徑,AD=12,點(diǎn)B、CO上,AB、DC的延長(zhǎng)線交于點(diǎn)E,且CB=CE,∠BCE=70°.

有以下結(jié)論:①∠ADE=E;劣弧的長(zhǎng)為;③點(diǎn)C的中點(diǎn);④BD平分∠ADE.以上結(jié)論一定正確的是_________________.(把正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案