【題目】目前“校園手機(jī)”現(xiàn)象越來越受到社會(huì)關(guān)注,針對這種現(xiàn)象,某校九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了若干名家長對“中學(xué)生帶手機(jī)的”的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;
(2)求出圖2中扇形C所對的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)在此次調(diào)查活動(dòng)中,初三(1)班有A1、A2兩位家長對中學(xué)生帶手機(jī)持反對態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長對中學(xué)生帶手機(jī)也持反對態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求出選出的2人來自不同班級的概率.
【答案】(1)200;(2)詳見解析;(3)
【解析】
(1)用D類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以C類所占的百分比得到扇形C所對的圓心角的度數(shù),再用200乘以C類所占的百分比得到C類人數(shù),然后補(bǔ)全圖1;
(3)畫樹狀圖展示所有12種等可能結(jié)果,再找出2人來自不同班級的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)120÷60%=200(人),
所以調(diào)查的家長數(shù)為200人;
(2)扇形C所對的圓心角的度數(shù)=360°×(1﹣20%﹣15%﹣60%)=18°,
C類的家長數(shù)=200×(1﹣20%﹣15%﹣60%)=10(人),
補(bǔ)充圖為:
(3)設(shè)初三(1)班兩名家長為A1、A2,初三(2)班兩名家長為B1,B2,
畫樹狀圖為
共有12種等可能結(jié)果,其中2人來自不同班級共有8種,
所以2人來自不同班級的概率==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地政府計(jì)劃為農(nóng)戶購買農(nóng)機(jī)設(shè)備提供補(bǔ)貼.其中購買Ⅰ型、Ⅱ型設(shè)備農(nóng)民所投資的金額與政府補(bǔ)貼的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
型號 金額 | Ⅰ型設(shè)備 | Ⅱ型設(shè)備 | |||
投資金額x(萬元) | x | 5 | x | 2 | 4 |
補(bǔ)貼金額y(萬元) | y1=kx(k≠0) | 2 | y2=ax2+bx(a≠0) | 2.8 | 4 |
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶共投資10萬元購買Ⅰ型、Ⅱ型兩種設(shè)備,兩種設(shè)備的投資均為整數(shù)萬元,要想獲得最大補(bǔ)貼金額,應(yīng)該如何購買?能獲得的最大補(bǔ)貼金額為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計(jì)圖如下:
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超過300萬人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果等邊三角形的一邊與軸平行或在軸上,則稱這個(gè)等邊三角形為水平正三角形.
(1)已知,,若是水平正三角形,則點(diǎn)坐標(biāo)的是_____(只填序號);①,②,③,④
(2)已知點(diǎn),,,以這三個(gè)點(diǎn)中的兩個(gè)點(diǎn)及平面內(nèi)的另一個(gè)點(diǎn)為頂點(diǎn),構(gòu)成一個(gè)水平正三角形,則這兩個(gè)點(diǎn)是 ,并求出此時(shí)點(diǎn)的坐標(biāo);
(3)已知的半徑為,點(diǎn)是上一點(diǎn),點(diǎn)是直線上一點(diǎn),若某個(gè)水平正三角形的兩個(gè)頂點(diǎn)為,,直接寫出點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“校園讀書月”活動(dòng)中,小華調(diào)查了班級里名同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖.下面有四個(gè)推斷:
這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是元
這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是元
若該校共有學(xué)生人,根據(jù)樣本數(shù)據(jù),估計(jì)本學(xué)期計(jì)劃購買課外書花費(fèi)元的學(xué)生有人
花費(fèi)不超過元的同學(xué)共有人.
其中合理的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在中,,點(diǎn)是射線上任意一點(diǎn),是等邊三角形,且點(diǎn)在的內(nèi)部,連接.探究線段與之間的數(shù)量關(guān)系.
請你完成下列探究過程:
先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.
當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖2),請你補(bǔ)全圖形.由的度數(shù)為_______________,點(diǎn)落在_______________,容易得出與之間的數(shù)量關(guān)系為_______________
當(dāng)是的平分線時(shí),判斷與之間的數(shù)量關(guān)系并證明
當(dāng)點(diǎn)在如圖3的位置時(shí),請你畫出圖形,研究三點(diǎn)是否在以為圓心的同一個(gè)圓上,寫出你的猜想并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小米利用暑期參加社會(huì)實(shí)踐,在媽媽的幫助下,利用社區(qū)提供的免費(fèi)攤點(diǎn)賣玩具,已知小米所有玩具的進(jìn)價(jià)均2元個(gè),在銷售過程中發(fā)現(xiàn):每天玩具銷售量y件與銷售價(jià)格x元件的關(guān)系如圖所示,其中AB段為反比例函數(shù)圖象的一部分,BC段為一次函數(shù)圖象的一部分,設(shè)小米銷售這種玩具的日利潤為w元.
根據(jù)圖象,求出y與x之間的函數(shù)關(guān)系式;
求出每天銷售這種玩具的利潤元與元件之間的函數(shù)關(guān)系式,并求每天利潤的最大值;
若小米某天將價(jià)格定為超過4元,那么要使得小米在該天的銷售利潤不低于54元,求該天玩具銷售價(jià)格的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)市場規(guī)定,批發(fā)蘋果不少于時(shí),批發(fā)價(jià)為5元/.小王攜帶現(xiàn)金4000元到這市場采購蘋果,并以批發(fā)價(jià)買進(jìn).
(Ⅰ)根據(jù)題意,填表:
購買數(shù)量 | ||||
花費(fèi)元 | ||||
剩余現(xiàn)金元 |
(Ⅱ)設(shè)購買的蘋果為,小王付款后還剩余現(xiàn)金元.求關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;
(Ⅲ)根據(jù)題意填空:若小王剩余現(xiàn)金為700元,則他購買__________的蘋果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com