【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
【答案】(1)平行,理由見解析;(2)平行,理由見解析;(3)平分,理由見解析
【解析】
試題分析:(1)∠1+∠2=180°而∠2+∠CDB=180°,則∠CDB=∠1,根據(jù)同位角相等,兩直線平行,求得結(jié)論;
(2)要說明AD與BC平行,只要說明∠BCF+∠CDA=180°即可.而根據(jù)AE∥FC可得:∠CDA+∠DEA=180°,再據(jù)∠DAE=∠BCF就可以證得.
(3)BC平分∠DBE即說明∠EBC=∠DBC是否成立.根據(jù)AE∥FC,可得:∠EBC=∠BCF,據(jù)AD∥BC得到:∠BCF=∠FAD,∠DBC=∠BAD,進(jìn)而就可以證出結(jié)論.
解:(1)平行;
證明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
證明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
∵∠DAE=∠BCF
∴∠CDA+∠BCF=180°,
∴AD∥BC.
(3)平分,
證明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)探究與發(fā)現(xiàn):如圖①,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在底邊BC上,AE=AD,連結(jié)DE.
(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);
(2)當(dāng)點(diǎn)D在BC (點(diǎn)B、C除外) 上運(yùn)動時,試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;
(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ΔABC和ΔDEF中,已知∠C=∠D,∠B=∠E,要判斷這兩個三角形全等,還需添加條件( )
A. AB=ED B. AB=FD C. AC=FD D. ∠A =∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代換).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B=∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將∠AOB繞點(diǎn)O順時針旋轉(zhuǎn)15°,得到∠COD,若∠COD=45°,則∠AOB的度數(shù)是( ).
A.15° B.30° C.45° D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國多個城市遭遇霧霾天氣,空氣中可吸入顆粒(又稱PM2.5)濃度升高,為應(yīng)對空氣污染,小強(qiáng)家購買了空氣凈化器,該裝置可隨時顯示室內(nèi)PM2.5的濃度,并在PM2.5濃度超過正常值25(mg/m3)時吸收PM2.5以凈化空氣.隨著空氣變化的圖象(如圖),請根據(jù)圖象,解答下列問題:
(1)寫出題中的變量;
(2)寫出點(diǎn)M的實(shí)際意義;
(3)求第1小時內(nèi),y與t的一次函數(shù)表達(dá)式;
(4)已知第5﹣6小時是小強(qiáng)媽媽做晚餐的時間,廚房內(nèi)油煙導(dǎo)致PM2.5濃度升高.若該凈化器吸收PM2.5的速度始終不變,則第6小時之后,預(yù)計經(jīng)過多長時間室內(nèi)PM2.5濃度可恢復(fù)正常?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com