【題目】近年來,我國多個(gè)城市遭遇霧霾天氣,空氣中可吸入顆粒(又稱PM2.5)濃度升高,為應(yīng)對(duì)空氣污染,小強(qiáng)家購買了空氣凈化器,該裝置可隨時(shí)顯示室內(nèi)PM2.5的濃度,并在PM2.5濃度超過正常值25(mg/m3)時(shí)吸收PM2.5以凈化空氣.隨著空氣變化的圖象(如圖),請(qǐng)根據(jù)圖象,解答下列問題:
(1)寫出題中的變量;
(2)寫出點(diǎn)M的實(shí)際意義;
(3)求第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式;
(4)已知第5﹣6小時(shí)是小強(qiáng)媽媽做晚餐的時(shí)間,廚房內(nèi)油煙導(dǎo)致PM2.5濃度升高.若該凈化器吸收PM2.5的速度始終不變,則第6小時(shí)之后,預(yù)計(jì)經(jīng)過多長時(shí)間室內(nèi)PM2.5濃度可恢復(fù)正常?
【答案】(1)時(shí)間t和PM2.5的濃度;(2)1小時(shí)后PM2.5的濃度達(dá)到正常值25;(3)y=﹣60t+85;(4)
【解析】
試題分析:(1)由函數(shù)圖象可以得出變量是時(shí)間t和PM2.5的濃度;
(2)1小時(shí)后PM2.5的濃度達(dá)到正常值25;
(3)設(shè)第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式為y=kt+b,由待定系數(shù)法求出其解即可;
(4)設(shè)經(jīng)過a小時(shí)后室內(nèi)PM2.5濃度可恢復(fù)正常,由工程問題的數(shù)量關(guān)系建立方程求出其解即可.
解:(1)由函數(shù)圖象,得
題中的變量是時(shí)間t和PM2.5的濃度;
(2)點(diǎn)M的實(shí)際意義是:
1小時(shí)后PM2.5的濃度達(dá)到正常值25;
(3)設(shè)第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式為y=kt+b,由題意,得
,
解得:,
∴y=﹣60t+85;
(4)設(shè)經(jīng)過a小時(shí)后室內(nèi)PM2.5濃度可恢復(fù)正常,由題意,得
125﹣60a=25,
解得:a=.
答:預(yù)計(jì)經(jīng)過時(shí)間室內(nèi)PM2.5濃度可恢復(fù)正常.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在雙曲線y=(k≠0)上,則k的值為( )
A.4 B.﹣2 C. D.﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小知識(shí):如圖,我們稱兩臂長度相等(即)的圓規(guī)為等臂圓規(guī). 當(dāng)?shù)缺蹐A規(guī)的兩腳擺放在一條直線上時(shí),若張角,則底角.
請(qǐng)運(yùn)用上述知識(shí)解決問題:
如圖,個(gè)相同規(guī)格的等臂圓規(guī)的兩腳依次擺放在同一條直線上,其張角度數(shù)變化如下:
,, ,,…
(1)、①由題意可得= ;
②若 平分,則= ;
(2)、= (用含的代數(shù)式表示);
(3)、當(dāng)時(shí),設(shè)的度數(shù)為,的角平分線與構(gòu)成的角的度數(shù)為,那么與之間的等量關(guān)系是 ,請(qǐng)說明理由. (提示:可以借助下面的局部示意圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( ).
A.銳角三角形的三條高線、三條中線、三條角平分線分別交于一點(diǎn)
B.鈍角三角形有兩條高線在三角形外部
C.直角三角形只有一條高線
D.任意三角形都有三條高線、三條中線、三條角平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:
①abc>0;②2a+b=0;③當(dāng)x≠1時(shí),a+b>ax2+bx;④a﹣b+c>0.
其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=相交于A(﹣1,2),B(2,m)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求k1、k2、m的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求△ABD的面積;
(3)若M(x1,y1)、N(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)M、N各位于坐標(biāo)系的哪個(gè)象限,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價(jià)比足球的單價(jià)多40元,用1500元購進(jìn)的籃球個(gè)數(shù)與900元購進(jìn)的足球個(gè)數(shù)相等.
(1)籃球和足球的單價(jià)各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(x,y)在第三象限,且點(diǎn)P到x軸的距離為3,到y軸的距離為2,則點(diǎn)P的坐標(biāo)是( )
A. (-2,-3) B. (-2,3) C. (2,-3) D. (2,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com