【題目】計算: .
【答案】解:原式= +1+2﹣2× ,
= +3﹣ ,
=3
【解析】首先計算絕對值、零次冪、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值,然后再計算乘法,最后計算加減即可.此題主要考查了實數(shù)的運(yùn)算,解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運(yùn)算.
【考點精析】關(guān)于本題考查的零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),需要了解零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠B=∠C.
(1)若AD∥BC,則AD平分∠EAC嗎?請說明理由.
(2)若∠B+∠C+∠BAC=180°,AD平分∠EAC,則AD∥BC嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BE與AC相交于點M,則∠ADM的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB交y軸于點A(0,1),交x軸于點B(3,0).直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,在點D的上方,設(shè)P(1,n).
(1)求直線AB的解析式;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù): ≈1.73, ≈1.41.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是( 。
A. AB//DC,AD//BC B. AB//DC,AD=BC
C. AO=CO,BO=DO D. AB=DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個三角點陣,從上向下數(shù)有無數(shù)多行,其中第一行有1個點,第二行有2個點,第三行有4個點,第四行有8個點,….那么這個三角點陣中前n行的點數(shù)之和可能是( 。
A. 510 B. 511 C. 512 D. 513
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com