【題目】某體育文化用品商店購進(jìn)籃球和排球共30個(gè),進(jìn)價(jià)和售價(jià)如下表,若全部銷售完后共可獲利潤1680元.

籃球

排球

進(jìn)價(jià)(元/個(gè)

150

120

售價(jià)(元/個(gè)

200

180

(1)請利用二元一次方程組求購進(jìn)籃球和排球各多少個(gè)?

(2)“雙11”快到了,這個(gè)體育文化用品商店也準(zhǔn)備搞促銷活動(dòng),計(jì)劃籃球9折銷售,排球8折銷售,則銷售8個(gè)籃球的利潤與銷售幾個(gè)排球的利潤相等?

【答案】(1)購進(jìn)籃球12個(gè),購進(jìn)排球18個(gè);(2)銷售8個(gè)籃球的利潤與銷售10個(gè)排球的利潤相等.

【解析】

(1)設(shè)購進(jìn)籃球x個(gè),購進(jìn)排球y個(gè),根據(jù)題意列出二元一次方程組,求方程組的解即可解題,

(2)先求出8個(gè)籃球打折之后的總利潤,再求出一個(gè)排球打折的利潤,做除法即可解題.

(1)解:設(shè)購進(jìn)籃球x個(gè),購進(jìn)排球y個(gè),根據(jù)題意得

答:購進(jìn)籃球12個(gè),購進(jìn)排球18個(gè)

(2)

答:銷售8個(gè)籃球的利潤與銷售10個(gè)排球的利潤相等

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)xOy中,正比例函數(shù)y=﹣4x的圖象經(jīng)過點(diǎn)A(﹣3,m),點(diǎn)Bx軸的負(fù)半軸上,過點(diǎn)A作直線ACx軸,交∠AOB的平分線OC于點(diǎn)C,那么點(diǎn)C到直線OA的距離等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD交于點(diǎn)O,OE平分∠AOC,點(diǎn)FAB上一點(diǎn)(不與點(diǎn)AO重合),過點(diǎn)FFGOE,交CD于點(diǎn)G,若∠AOD=110°,則∠AFG度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BCAF于點(diǎn)C,∠A+∠190°.

1)求證:ABDE;

2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿線段AF運(yùn)動(dòng)到點(diǎn)F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個(gè)角之間具有怎樣的數(shù)量關(guān)系(不考慮點(diǎn)P與點(diǎn)A,D,C重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是(
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時(shí),行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時(shí),行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時(shí),行駛100公里,甲車消耗的汽油量約為10升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三位數(shù),若十位上的數(shù)字是百位數(shù)字與個(gè)位數(shù)字的和,我們稱這個(gè)三位數(shù)叫“圣誕數(shù)”,并且把這個(gè)“圣誕數(shù)”的前兩位組成的兩位數(shù)記為m,后兩位組成的兩位數(shù)記為n,并規(guī)定d=。如一個(gè)三位數(shù)385,3+5=8,385是“圣誕數(shù)”,且m=38,n=85,則d==.

(1)寫出最小的“圣誕數(shù)”;

(2)求證:任意一個(gè)“圣誕數(shù)”是11的倍數(shù);

(3)求出所有能被8整除的“圣誕數(shù)”,并直接寫出這些“圣誕數(shù)”中d的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點(diǎn)A作AE∥BD,交CD的延長線于點(diǎn)E,過點(diǎn)E作EF⊥BC,交BC延長線于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)OEG經(jīng)過點(diǎn)O且平行于FH,分別與ABCD交于點(diǎn)E、G

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.

查看答案和解析>>

同步練習(xí)冊答案