【題目】2017年上半年某市各級(jí)各類中小學(xué)(含中等職業(yè)學(xué)校)開(kāi)展了“萬(wàn)師訪萬(wàn)家”活動(dòng).某縣家訪方式有:A.上門走訪;B.電話訪問(wèn);C.網(wǎng)絡(luò)訪問(wèn)(班級(jí)微信或QQ群);D.其他.該縣教育局負(fù)責(zé)人從“萬(wàn)師訪萬(wàn)家”平臺(tái)上隨機(jī)抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本是________________________________,樣本容量為________,
扇形統(tǒng)計(jì)圖中,“A”所對(duì)應(yīng)的圓心角的度數(shù)為多少?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)已知該縣共有3500位老師參與了這次“萬(wàn)師訪萬(wàn)家”活動(dòng),請(qǐng)估計(jì)該縣共有多少位老師采用的是上門走訪的方式進(jìn)行家訪的?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b﹣<0的解集.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,兩個(gè)建筑物AB和CD的水平距離為30m,張明同學(xué)住在建筑物AB內(nèi)10樓P室,他觀測(cè)建筑物CD樓的頂部D處的仰角為30°,測(cè)得底部C處的俯角為45°,求建筑物CD的高度.( 取1.73,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(- 5)+ 6
(2)(+21)+(-31)
(3)(- 5.2 ) + ( - 1.2 )
(4)(﹣3)+7+(﹣6)+(﹣7)
(5)(- 20 ) +(-14)+(-28)+16
(6)5.6+(﹣0.9)+4.4+(﹣8.1)
(7)30 + 15+(-7)+(-15)
(8).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).
(1)、求證:四邊形BFDE是平行四邊形;
(2)、若四邊形BFDE是菱形, AB=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E是CD中點(diǎn),連結(jié)OE.過(guò)點(diǎn)C作CF∥BD交線段OE的延長(zhǎng)線于點(diǎn)F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).
(1)在如圖所示的平面直角坐標(biāo)系畫(huà)出該四邊形;
(2)四邊形ABCD的面積是________;
(3)四邊形ABCD內(nèi)(邊界點(diǎn)除外)一共有_____個(gè)整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形且AB=AC,BD是⊙O的直徑,過(guò)點(diǎn)A做AP∥BC交DB的延長(zhǎng)線于點(diǎn)P,連接AD.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC= ,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com