【題目】計算:(﹣1)2+| ﹣1|+2sin45°.

【答案】解:原式=1+ ﹣1+2× =2
【解析】本題涉及正整數(shù)指數(shù)冪、絕對值、二次根式、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.
【考點精析】認真審題,首先需要了解特殊角的三角函數(shù)值(分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”),還要掌握實數(shù)的運算(先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AOB=45°,PQ分別是邊OA,OB上的兩點O沿PQ折疊,點O落在平面內點C.若折疊后PCQB,則∠OPQ的度數(shù)是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校1200名學生參加了一場安全知識問答競賽活動,為了解筆試情況,隨機抽查了部分學生的得分情況,整理并制作了如圖所示的圖表(部分未完成),請根據(jù)圖表提供的信息,解答下列問題:

(1)本次調查的樣本容量為________.

(2)在表中,m=_______,n=_________.

(3)補全頻數(shù)頒分布直方圖;

(4)如果比賽成績80分以上(80)為優(yōu)秀,本次競賽中筆試成績?yōu)閮?yōu)秀的大約有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0)、B(0,3)、C(1,0)三點.
(1)求拋物線的解析式和頂點D的坐標;
(2)如圖1,將拋物線的對稱軸繞拋物線的頂點D順時針旋轉60°,與直線y=﹣x交于點N.在直線DN上是否存在點M,使∠MON=75°.若存在,求出點M的坐標;若不存在,請說明理由;
(3)點P、Q分別是拋物線y=ax2+bx+c和直線y=﹣x上的點,當四邊形OBPQ是直角梯形時,求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人加工同一種機器零件,甲比乙每小時多加工10個零件,甲加工150個零件所用的時間與乙加工120個零件所用時間相等
(1)求甲、乙兩人每小時各加工多少個機器零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年上半年某市各級各類中小學(含中等職業(yè)學校)開展了萬師訪萬家活動.某縣家訪方式有:A.上門走訪;B.電話訪問;C.網(wǎng)絡訪問(班級微信或QQ群);D.其他.該縣教育局負責人從萬師訪萬家平臺上隨機抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調查的樣本是________________________________,樣本容量為________

扇形統(tǒng)計圖中,“A”所對應的圓心角的度數(shù)為多少?

(2)請補全條形統(tǒng)計圖.

(3)已知該縣共有3500位老師參與了這次萬師訪萬家活動,請估計該縣共有多少位老師采用的是上門走訪的方式進行家訪的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某港口位于東西方向的海岸線上.遠航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后相距30海里.如果知道遠航號沿東北方向航行,能知道海天號沿哪個方向航行?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理與黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠玉.生活中到處可見黃金分割的美.如圖,線段AB=1,點P1是線段AB的黃金分割點(AP1<BP1),點P2是線段AP1的黃金分割點(AP2<P1P2),點P3是線段AP2的黃金分割點(AP3<P2P3),…,依此類推,則APn的長度是

查看答案和解析>>

同步練習冊答案