【題目】如圖,在Rt△ABC中,∠ABC=90°,∠C=30°,點D是線段BC上的動點,將線段AD繞點A順時針旋轉60°至AD',連接BD'.若AB=2cm,則BD'的最小值為_____.
【答案】1.
【解析】
在AC上截取AE=AB=2,作EF⊥BC于F,如圖,先計算出AC=2AB=4,BC=2,∠BAC=60°,則CE=2,再在Rt△CEF中計算出EF=1,FC=,接著證明△ABD′≌△ADE得到DE=BE′,然后利用勾股定理得到DE2=DF2+EF2=(BD﹣)2+1,然后根據(jù)二次函數(shù)的性質解決問題.
解:在AC上截取AE=AB=2,作EF⊥BC于F,如圖,
∵∠ABC=90°,∠C=30°,
∴AC=2AB=4,BC=AB=2,∠BAC=60°,
∴CE=AC﹣AE=2,
在Rt△CEF中,EF=CE=1,FC=EF=,
∵線段AD繞點A順時針旋轉60°至AD',
∴AD=AD′,∠DAD′=60°,
∴∠BAD′=∠EAD,
在△ABD′和△ADE中
,
∴△ABD′≌△ADE,
∴DE=BE′,
在Rt△DEF中,DE2=DF2+EF2=(﹣BD)2+12=(BD﹣)2+1,
∴當BD=時,DE2有最小值1,
∴BD'的最小值為1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點O.將∠COB繞點O順時針旋轉,設旋轉角為α(0<α<90°),角的兩邊分別與BC,AB交于點M,N,連接DM,CN,MN,下列四個結論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M為拋物線與x軸的焦點為A(-3,0),B(1,0),與y軸交于點C,連結AM,AC,點D為線段AM上一動點(不與A重合),以CD為斜邊在CD上側作等腰Rt△DEC,連結AE,OE.
(1)求拋物線的解析式及頂點M的坐標;
(2)求解AD:OE的值;
(3)當△OEC為直角三角形時,求AD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P.
(1)若⊙P與x軸有公共點,則k的取值范圍是______.
(2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關系,并說明理由;
(3)當⊙P與直線l相切時,k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com