【題目】如圖,點(diǎn)M為拋物線x軸的焦點(diǎn)為A(-3,0),B(1,0),與y軸交于點(diǎn)C,連結(jié)AM,AC,點(diǎn)D為線段AM上一動(dòng)點(diǎn)(不與A重合),以CD為斜邊在CD上側(cè)作等腰RtDEC,連結(jié)AE,OE.

(1)求拋物線的解析式及頂點(diǎn)M的坐標(biāo);

(2)求解AD:OE的值;

(3)當(dāng)OEC為直角三角形時(shí),求AD的值.

【答案】(1),M(-1,-4);(2);(3)

【解析】

(1)根據(jù)點(diǎn)A、B的坐標(biāo)代入求出b、c的值即可求出拋物線的解析式,進(jìn)而求出M的坐標(biāo),(2)通過(guò)解析式可求出C點(diǎn)坐標(biāo),可知AO=OC根據(jù)∠DCA+ACE=OCE+ACE=可證明∠DCA=OCE,進(jìn)而可知△DCA∽△ECO.

即可求出AD:OE的值(3)分類(lèi)討論:當(dāng)∠OEC=Rt∠時(shí),由△DCA∽△ECO.可知∠ADC=OEC=Rt∠,由A、M、C三點(diǎn)坐標(biāo)可求出三邊長(zhǎng)度,可知∠MCA=ADC=Rt

由∠DAC=CAM,可證明△ADC∽△ACM,即可求出AD的長(zhǎng);當(dāng)∠ECO=Rt∠時(shí),同理得∠ACD=Rt∠點(diǎn)D和點(diǎn)M重合,

(1)把A(-3,0),B(1,0)代入,得

M(-1,-4)

(2)當(dāng)x=0時(shí),解得y=-3,

C(0,-3)

A(-3,0)

AO=OC=3,

∵∠AOC=

∴∠OCA=AC=OC

∵△CDE為等腰直角三角形

∴∠DCE=DC=EC

∴∠DCA+ACE=OCE+ACE=

∴∠DCA=OCE.

∴△DCA∽△ECO.

AD:OE=

(3)①當(dāng)∠OEC=Rt∠時(shí),

∵△DCA∽△ECO,

∴∠ADC=OEC=Rt.

連接MC,A(-3,0),C(0,-3),M(-1,-4)

,

,即∠MCA=ADC=Rt

∵∠DAC=CAM,

∴△ADC∽△ACM,

②當(dāng)∠ECO=Rt∠時(shí),同理得∠ACD=Rt

∴點(diǎn)D和點(diǎn)M重合,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角板的兩個(gè)直角重疊在一起,∠A=30°,∠C=45°,△COD固定不動(dòng),△AOB繞著O點(diǎn)逆時(shí)針旋轉(zhuǎn)α°(0°<α<180° ),使兩個(gè)三角形至少有一組邊所在直線垂直,則α=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,BC=3,AB=4,,E為線段BC上任意一點(diǎn),連接AE并延長(zhǎng)與DC交于點(diǎn)G,若BE=2EC,則AE的邊長(zhǎng)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形),ABC的頂點(diǎn)A,B的坐標(biāo)分別為:(﹣43),(-2,﹣1).

1)請(qǐng)?jiān)趫D中作出平面直角坐標(biāo)系并寫(xiě)出點(diǎn)C的坐標(biāo);

2)請(qǐng)作出將△ABC向下平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后的;并寫(xiě)出點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是( 。

A.正方形與正三角形B.正五邊形與正三角形

C.正六邊形與正三角形D.正八邊形與正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點(diǎn),BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)上一點(diǎn),將沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案