【題目】如圖,在等邊三角形ABC中,AD⊥BC,垂足為D,且AD=6,E是AC邊上的中點(diǎn),M是AD邊上的動點(diǎn),則EM+CM的最小值是______.
【答案】6
【解析】
連接BE,交AD于M,根據(jù)兩點(diǎn)之間,線段最短,則BE就是PE+PC的最小值,根據(jù)等邊三角形的三線合一的性質(zhì),從而證得BE=AD=6.
解:如圖所示:
∵AD是BC邊上的中線,
∴AD等邊三角形ABC的邊BC上的高,
∴AD是BC的垂直平分線,
連接BE,交AD于M,
∴BM=CM
∴EM+CM=EM+BM=BE
根據(jù)兩點(diǎn)之間,線段最短,則BE就是EM+CM的最小值,
∵E是AC的中點(diǎn),
∴BE是等邊三角形ABC的邊AC上的高,
∴BE=AD,
∵等邊三角形ABC的邊BC上的高為6,
∴BE=AD=6.
∴EM+CM的最小值是6.
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=﹣x﹣1與x軸,y軸的交點(diǎn)分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+c與x軸分別交于點(diǎn)A、C,直線x=﹣1與x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)在線段AB上是否存在一點(diǎn)P,使以A,D,P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)若點(diǎn)Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4),
(1)將△ABC各頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別減5后得到△A1B1C1;
①請?jiān)趫D中畫出△A1B1C1;
②求這個變換過程中線段AC所掃過的區(qū)域面積;
(2)將△ABC繞點(diǎn)(1,0)按逆時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,請?jiān)趫D中畫出△A2B2C2,并分別寫出△A2B2C2的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABO.
(1)點(diǎn)A關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為_________,點(diǎn)B關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為_________;
(2)判斷△ABO的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E是△ABC內(nèi)的兩點(diǎn),AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,則BC的長是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動時間為x,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點(diǎn)和,是上的一點(diǎn),若將沿折疊,點(diǎn)恰好落在軸上的點(diǎn)處,則直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一個三角形中,其中有一個內(nèi)角是另外一個內(nèi)角的一半,則這樣的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在鈍角三角形中,,,,過點(diǎn)的直線交邊于點(diǎn).點(diǎn)在直線上,且.
(1)若,點(diǎn)在延長線上.
① 當(dāng),點(diǎn)恰好為中點(diǎn)時,依據(jù)題意補(bǔ)全圖1.請寫出圖中的一個“半角三角形”:_______;
② 如圖2,若,圖中是否存在“半角三角形”(△除外),若存在,請寫出圖中的“半角三角形”,并證明;若不存在,請說明理由;
(2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請直接寫出,, 滿足的數(shù)量關(guān)系:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
()自變量的取值范圍是全體實(shí)數(shù),與的幾組對應(yīng)值列表:
其中__________.
()根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
()觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì).
()進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程有__________個實(shí)數(shù)根.
②方程有個實(shí)數(shù)根,的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com