【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

)自變量的取值范圍是全體實(shí)數(shù),的幾組對(duì)應(yīng)值列表:

其中__________

)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該函數(shù)圖象的另一部分.

)觀察函數(shù)圖象,寫(xiě)出一條函數(shù)的性質(zhì).

)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

①方程__________個(gè)實(shí)數(shù)根.

②方程個(gè)實(shí)數(shù)根,的取值范圍是__________

【答案】 3

【解析】

(1)將x=代入函數(shù)解析式中求出y值,即可得出結(jié)論;

(2)根據(jù)表格數(shù)據(jù),描點(diǎn)補(bǔ)充完圖形;

(3)根據(jù)函數(shù)圖象,尋找出對(duì)稱軸以及函數(shù)的單調(diào)區(qū)間,此題得解;

(4)①根據(jù)函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),即可得到結(jié)論;②根據(jù)函數(shù)的圖象即可得到a的取值范圍是-1<a<0.

)將代入,

,

)如圖所示:

)圖象關(guān)于軸對(duì)稱.

①當(dāng)時(shí),

,

,

,

當(dāng)時(shí),

,

,

綜上所述方程的根為,,則有個(gè);

②根據(jù)圖象可得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,ADBC,垂足為D,且AD6,EAC邊上的中點(diǎn),MAD邊上的動(dòng)點(diǎn),則EM+CM的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AD平分∠BACBCD,∠MDN的兩邊分別與AB,AC相交于MN兩點(diǎn),且DM=DN.

1)如圖甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,NDAB.

①寫(xiě)出∠MDA= °,AB的長(zhǎng)是 .

②求四邊形AMDN的周長(zhǎng);

2)如圖乙,過(guò)DDFACF,先補(bǔ)全圖乙再證明AM+AN=2AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一塊含有角的三角板放置在一條直線上,邊與直線重合,邊的垂直平分線與邊分別交于兩點(diǎn),連接.

(1) 三角形;

(2)直線上有一動(dòng)點(diǎn)(不與點(diǎn)重合) ,連接并把繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接.當(dāng)點(diǎn)在圖2所示的位置時(shí),證明.我們可以用來(lái)證明,從而得到.當(dāng)點(diǎn)移動(dòng)到圖3所示的位置時(shí),結(jié)論是否依然成立?若成立,請(qǐng)你寫(xiě)出證明過(guò)程;若不成立,請(qǐng)你說(shuō)明理由.

(3)當(dāng)點(diǎn)邊上移動(dòng)時(shí)(不與點(diǎn)重合),周長(zhǎng)的最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn),,我們把,兩點(diǎn)間的平面距離,記作

)已知為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)是坐標(biāo)軸上的點(diǎn),滿足,請(qǐng)寫(xiě)出點(diǎn)的坐標(biāo).答:__________

)設(shè)是平面上一點(diǎn),是直線上的動(dòng)點(diǎn),我們定義的最小值叫做到直線平面距離.試求點(diǎn)到直線平面距離”.

)在上面的定義基礎(chǔ)上,我們可以定義平面上一條直線與⊙直角距離:在直線與⊙上各自任取一點(diǎn),此兩點(diǎn)之間的平面距離的最小值稱為直線與⊙平面距離,記作

試求直線與圓心在直線坐標(biāo)系原點(diǎn)、半徑是的⊙的直角距離__________.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李先生參加了清華同方電腦公司推出的分期付款購(gòu)買電腦活動(dòng),他購(gòu)買的電腦價(jià)格為萬(wàn)元,交了首付之后每月付款元,月結(jié)清余款.的函數(shù)關(guān)系如圖所示,試根據(jù)圖象提供的信息回答下列問(wèn)題.

確定的函數(shù)關(guān)系式,并求出首付款的數(shù)目;

如打算每月付款不超過(guò)元,李先生至少幾個(gè)月才能結(jié)清余款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖,在正方形和平行四邊形中,點(diǎn),在同一條直線上,是線段的中點(diǎn),連接

探究:當(dāng)的夾角為多少度時(shí),平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說(shuō)明四邊形是矩形;然后延長(zhǎng)于點(diǎn),構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題的答案.

請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時(shí),四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊OAB的邊長(zhǎng)為2,點(diǎn)Bx軸上,反比例函數(shù)的圖象經(jīng)過(guò)A點(diǎn),將OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<360°),使點(diǎn)A落在雙曲線上,則α________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案