【題目】如圖,拋物線與直線交于A,B兩點,交x軸與D,C兩點,連接AC,已知A0,3),C3,0).(1)拋物線的解析式__;(2)設E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止.若使點M在整個運動中用時最少,則點E的坐標__

【答案】yx2x+3; 2,1).

【解析】

1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

2)根據(jù)銳角三角函數(shù),可得AENE的關系,根據(jù)路程與速度,可得點M在整個運動中所用的時間為DEEN,根據(jù)兩點之間線段最短,可得當D′、E、N三點共線時,DEEN最小,根據(jù)矩形的判定與性質,可得ND′OC3OND′CDC,根據(jù)拋物線與x軸的交點可得OD的長,再求ON的長,可得答案.

解:(1)把A0,3),C3,0)代入,

,解得

∴拋物線的解析式為yx2x+3,

故答案為yx2x+3;

2)∵A03),C3,0),

OAOC3,

∴△AOC是等腰直角三角形,

∴∠OAC45°,

過點EENy軸于N,如圖,

RtANE中,ENAEsin45°AE,即AEEN,

∴點M在整個運動中所用的時間為DE+EN

作點D關于AC的對稱點D′,連接D′E,

則有D′EDED′CDC,∠D′CA=∠DCA45°,

∴∠D′CD90°,DE+END′E+EN,

根據(jù)兩點之間線段最短可得:當D′、EN三點共線時,DE+END′E+EN最小,

此時,∵∠D′CD=∠D′NO=∠NOC90°,

∴四邊形OCD′N是矩形,

ND′OC3,OND′CDC

對于yx2x+3,當y0時,有x2x+30,

解得:x12x23

D2,0),OD2

ONDCOCOD321,

∴點E的坐標為(21),

故答案為(21).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.

(1)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀并說明理由;

(2)已知a:b:c=3:4:5,求該一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若△ABC中,其中一個內角是另一個內角的一半,則稱△ABC為“半角三角形”.

1)若RtABC為半角三角形,∠A=90°,則其余兩個角的度數(shù)為.

2)如圖,以△ABC的邊AB為直徑畫圓,與邊AC交于M,與邊BC交于N,已知CN=AC

①求證:∠C=60°.

②若△ABC是半角三角形,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠C=90°,BC=16DC=12,AD=21,動點P從點D出發(fā),沿射線DA的方向以每秒2個單位長度的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長度的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動.設運動的時間為t(秒).

(1)設△BPQ的面積為S,求St之間的函數(shù)關系式;

(2)當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么我們稱拋物線C1C2關聯(lián).

1)已知拋物線C1y=﹣2x2+4x+3C2y2x2+4x1,請判斷拋物線C1與拋物線C2是否關聯(lián),并說明理由.

2)拋物線C1,動點P的坐標為(t2),將拋物線繞點P旋轉180°得到拋物線C2,若拋物線C1C2關聯(lián),求拋物線C2的解析式.

3)點A為拋物線C1的頂點,點B為拋物線C1關聯(lián)的拋物線的頂點,是否存在以AB為斜邊的等腰直角三角形ABC,使其直角頂點C在直線x=﹣10上?若存在,求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結論:①abc0;②4acb2;③2a+b0;④其頂點坐標為(,﹣2);⑤當x時,yx的增大而減;⑥a+b+c0正確的有(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于兩點,交軸于點,點、是二次函數(shù)圖像上的一對對稱點,一次函數(shù)的圖像經(jīng)過;

1)請直接寫出點的坐標;

2)求二次函數(shù)的解析式;

3)根據(jù)圖像直接寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系中,點Ay軸上,點C軸上,OC=4,直線經(jīng)過點A,交軸于點D,點E在線段BC上,EDAD.

1)求點E的坐標;

2)聯(lián)結BD,求cotBDE的值;

3)點G在直線BC,且∠EDG=45°,求點G的坐標.

查看答案和解析>>

同步練習冊答案