【題目】若一組數據,,的平均數為4,方差為3,那么數據,,的平均數和方差分別是( )
A. 4, 3 B. 6 3 C. 3 4 D. 6 5
【答案】B
【解析】根據數據a1,a2,a3的平均數為4可知(a1+a2+a3)=4,據此可得出(a1+2+a2+2+a3+2)的值;再由方差為3可得出數據a1+2,a2+2,a3+2的方差.
∵數據a1,a2,a3的平均數為4,
∴(a1+a2+a3)=4,
∴(a1+2+a2+2+a3+2)=(a1+a2+a3)+2=4+2=6,
∴數據a1+2,a2+2,a3+2的平均數是6;
∵數據a1,a2,a3的方差為3,
∴[(a1-4)2+(a2-4)2+(a3-4)2]=3,
∴a1+2,a2+2,a3+2的方差為:[(a1+2-6)2+(a2+2-6)2+(a3+2-6)2]
=[(a1-4)2+(a2-4)2+(a3-4)2]
=3.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,長方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.點E為射線DC上的一個動點,把△ADE沿直線AE翻折得△AD′E.
(1)當D′點落在AB邊上時,∠DAE= °;
(2)如圖2,當E點與C點重合時,D′C與AB交點F,
①求證:AF=FC;②求AF長.
(3)連接D′B,當∠AD′B=90°時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“8字”的性質及應用:
(1)如圖①,AD、BC相交于點O,得到一個“8字”ABCD,求證:∠A+∠B=∠C+∠D.
(2)圖②中共有多少個“8字”?
(3)如圖②,∠ABC和∠ADC的平分線相交于點E,利用(1)中的結論證明∠E=(∠A+∠C).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,則∠ACB 的 度數( )
A. 90° B. 95° C. 100° D. 105°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,下列4個三角形中,均有AB=AC,則經過三角形的一個頂點的一條直線能夠將這個三角形分成兩個小等腰三角形的是( )
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數 的圖象過點,一次函數 的圖象經過點.
(1)求值并寫出二次函數表達式;
(2)求值;
(3)設直線與二次函數圖象交于兩點,過作垂直軸于點,
試證明:;
(4)在(3)的條件下,請判斷以線段為直徑的圓與軸的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖,矩形ABCD,AB=6cm,AD=2cm,點P以2cm/s的速度從頂點A出發(fā)沿折線A-B-C向點C運動,同時點Q以lcm/s的速度從頂點C出發(fā)向點D運動,當其中一個動點到達末端停止運動時,另一點也停止運動.
(1)問兩動點運動幾秒,使四邊形PBCQ的面積是矩形ABCD面積的;
(2)問兩動點經過多長時間使得點P與點Q之間的距離為?若存在,
求出運動所需的時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h(甲車休息前后的速度相同),甲、乙兩車行駛的路程y(km)與行駛的時間x(h)的函數圖象如圖所示.根據圖象的信息有如下四個說法:
①甲車行駛40千米開始休息
②乙車行駛3.5小時與甲車相遇
③甲車比乙車晚2.5小時到到B地
④兩車相距50km時乙車行駛了小時
其中正確的說法有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com