【題目】如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

【答案】B

【解析】

分析: 首先根據(jù)A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據(jù)AC//BD// y ,及反比例函數(shù)圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據(jù)三角形的面積公式表示出SOAC,SABD的面積,再根據(jù)△OAC與△ABD的面積之和為,列出方程,求解得出答案.

詳解: x=1代入得:y=1,

A(1,1),x=2代入得:y=,

B(2, ),

AC//BD// y,

C(1,K),D(2,)

AC=k-1,BD=-,

SOAC=(k-1)×1,

SABD= (-)×1,

又∵△OAC與△ABD的面積之和為,

(k-1)×1+ (-)×1=,解得:k=3;

故答案為B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)內有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設改造后剩余油菜花地所占面積為ym2.

(1)yx的函數(shù)表達式;

(2)若改造后觀花道的面積為13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列問題:

(1)若 n(n≠0)是關于 的方程 x+mx-2n=0的根,求 m+n的值;

(2)已知 , 為實數(shù),且 y=2,求 2x-3y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經過頂點A(m,2)和CD邊上的點E(n,),過點E的直線l交x軸于點F,交y軸于點G(0,-2),則點F的坐標是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c這時我們把關于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)同一直線上,反比例函數(shù)y=在第一象限的圖象經過小正方形右下頂點E.若OB2﹣BE2=8,則k的值是( 。

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB=10AC=6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把ABAC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時,條件中若出現(xiàn)中點中線字樣,可以考慮構造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同個三角形中,從而解決問題.

2)(嘗試應用)如圖②,△ABC中,∠BAC=90°,ADBC邊上的中線,試猜想線段AB,ACAD之間的數(shù)量關系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,DBC的中點,DMDN,DMAB于點M,DNAC于點N,連接MN.當BM=4,MN=5,AC=6時,請直接寫出中線AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知函數(shù)y=(k>0,x>0)的圖象與一次函數(shù)y=mx+5(m<0)的圖象相交不同的點A、B,過點AADx軸于點D,連接AO,其中點A的橫坐標為x0AOD的面積為2.

(1)求k的值及x0=4m的值;

(2)記[x]表示為不超過x的最大整數(shù),例如:[1.4]=1,[2]=2,設t=ODDC,若﹣<m<﹣,求[m2t]值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 中,AB=3cm,以 B 為圓心,1cm 長為半徑畫☉B,點 P 在☉B 上移動,連接 AP,并將 AP 繞點 A 逆時針旋轉 90° AP',連接 BP',在點 P 移動過程中,BP' 長度的最小值為________cm。

查看答案和解析>>

同步練習冊答案