【題目】在同一平面內(nèi),有相互平行的三條直線a,b,c,且a,b之間的距離為1b,c之間的距離是2,若等腰RtABC的三個(gè)頂點(diǎn)恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____

【答案】5

【解析】

過(guò)點(diǎn)BBEa于點(diǎn)E,過(guò)點(diǎn)CCFa于點(diǎn)F,由余角的性質(zhì)可得∠CAF=∠ABE,由“AAS”可證△ABE≌△CAF,可得AECF1,由勾股定理可求AB的長(zhǎng)即可解決問(wèn)題.

解:如圖,過(guò)點(diǎn)BBEa于點(diǎn)E,過(guò)點(diǎn)CCFa于點(diǎn)F,

ab之間的距離是1,bc之間的距離是2,

BE3,CF1,

∵∠BAC90°,BEEF,

∴∠BAE+CAF90°,∠BAE+ABE90°,

∴∠CAF=∠ABE,且ABAC,∠AEB=∠AFC90°,

∴△ABE≌△CAFAAS),

AECF1,

∴在RtABE中,AB

∵∠BAC90°,ABAC,

SABCABAC5

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=ABE=60°,G為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將ABG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到EBF,當(dāng)AG+BG+CG取最小值時(shí)EF的長(zhǎng)( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A.B.C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:AP是⊙O的切線;

(2)求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)Dy軸上,A(﹣3,0),B1b),則正方形ABCD的面積為(  )

A.34B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于OB=600,CDO的直徑,點(diǎn)PCD延長(zhǎng)線上的一點(diǎn),且AP=AC

1)求證:PAO的切線;

2)若PD=,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在等腰三角形ABC,∠A130°,求∠B的度數(shù)

2)在等腰三角形ABC中,∠A40°,求∠B的度數(shù).

3)根據(jù)(1)(2)問(wèn)后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個(gè)數(shù)也可能不同,如果在等腰三角形ABC中,設(shè)∠Ax°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象過(guò)點(diǎn)A(3,2).

(1)試求該反比例函數(shù)的表達(dá)式;

(2)Mm,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MBx軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線ACy軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BMDM的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A0a)、Bb10),且a、b滿足a212a360

1)求A、B兩點(diǎn)的坐標(biāo);

2)點(diǎn)C在線段BO上(C不與端點(diǎn)B、O重合),點(diǎn)D在線段AO上(D不與端點(diǎn)A、O重合),連CD,過(guò)DCD的垂線交ABP,若BC2DO,設(shè)C點(diǎn)橫坐標(biāo)為t,求P點(diǎn)橫坐標(biāo)(用含t的代數(shù)式表示).

3)在(2)的條件下,連BD, 點(diǎn)NBO中點(diǎn),NMBO,交BD于點(diǎn)M,連AM,若BDPB,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=15,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),ADE=B=α,DE交AC于點(diǎn)E,且tanα=有以下的結(jié)論: ADEACD; 當(dāng)CD=9時(shí),ACD與DBE全等; BDE為直角三角形時(shí),BD為12或; 0<BE,其中正確的結(jié)論是___________(填入正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案