【題目】如圖,已知ADBC,∠3+4180°,要證∠1=∠2,請完善證明過程,并在括號內(nèi)填上相應(yīng)依據(jù):

ADBC(已知)

∴∠l=∠3(   ),

∵∠3+4180°(已知),

BEDF(   ),

      (   )

∴∠1=∠2(   )

【答案】見解析.

【解析】

根據(jù)兩直線平行,內(nèi)錯角相等;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)填空.

解:∵ADBC(已知),

∴∠1=∠3(兩直線平行,內(nèi)錯角相等),

∵∠3+4180°(已知),

BEDF(同旁內(nèi)角互補(bǔ),兩直線平行),

∴∠2=∠3(兩直線平行,同位角相等),

∴∠2=∠1(等量代換)

故答案為:兩直線平行,內(nèi)錯角相等;同旁內(nèi)角互補(bǔ),兩直線平行;∠2;∠3;兩直線平行,同位角相等;等量代換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點(diǎn),且∠A=EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=BEF,其中結(jié)論正確的個數(shù)是( 。

A.3

B.4

C.1

D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,已知1輛大貨車與3輛小貨車一次可以運(yùn)貨14噸,2輛大貨車與5輛小貨車一次可以運(yùn)貨25噸.

11輛大貨車與1輛小貨車一次可以運(yùn)貨各多少噸?

21輛大貨車一次費(fèi)用為300元,1輛小貨車一次費(fèi)用為200元,要求兩種貨車共用10輛,兩次完成80噸的運(yùn)貨任務(wù),且總費(fèi)用不超過5400元,有哪幾種用車方案?請指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元宵節(jié)將至,我校組織學(xué)生制作并選送50盞花燈,共包括傳統(tǒng)花燈、創(chuàng)意花燈和現(xiàn)代花燈三大種.已知每盞傳統(tǒng)花燈需要35元材料費(fèi),每盞創(chuàng)意花燈需要33元材料費(fèi),每盞現(xiàn)代花燈需要30元材料費(fèi).

1)如果我校選送20盞現(xiàn)代花燈,已知傳統(tǒng)花燈數(shù)量不少于5盞且總材料費(fèi)不得超過1605元,請問選送傳統(tǒng)花燈、創(chuàng)意花燈的數(shù)量有哪幾種方案?

2)當(dāng)三種花燈材料總費(fèi)用為1535元時,求選送傳統(tǒng)花燈、創(chuàng)意花燈、現(xiàn)代花燈各幾盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,分別過點(diǎn)A,D作AE∥BC,DE∥AB,AE與DE相交于點(diǎn)E,連結(jié)CE.
(1)求證:AE=BD;
(2)求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù) 的圖象上的一個動點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個位上的數(shù)字之和為y,如果xy,那么稱這個四位數(shù)為“和平數(shù)”.

例如:2635,x2+6y3+5,因?yàn)?/span>xy,所以2635是“和平數(shù)”.

(1)請判斷:3562   (填“是”或“不是”)“和平數(shù)”.

(2)直接寫出:最小的“和平數(shù)”是   ,最大的“和平數(shù)”是   ;

(3)如果一個“和平數(shù)”的個位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,∠1∠2,GAD的中點(diǎn),BG的延長線交AC于點(diǎn)E,FAB上的一點(diǎn),CFAD垂直AD于點(diǎn)H,則下面判斷正確的有(  )

AD是△ABE的角平分線;BE是△ABD的邊AD上的中線;

CH是△ACD的邊AD上的高;AH是△ACF的角平分線和高

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直立在高速公路邊水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為( )

A.4
B.(2 +2)米
C.(4 ﹣4)米
D.(4 ﹣4)米

查看答案和解析>>

同步練習(xí)冊答案