【題目】已知△ABC中,∠ABC90°,將△ABC繞點B逆時針旋轉(zhuǎn)90°后,點A的對應點為點D,點C的對應點為點E,直線DE與直線AC交于點F,連接FB

1)如圖1,當∠BAC45°時,

①求證:DFAC

②求∠DFB的度數(shù);

2)如圖2,當∠BAC45°時,

①請依題意補全圖2;

②用等式表示線段FCFB,FE之間的數(shù)量關(guān)系,并證明.

【答案】(1)①詳見解析;②45°;(2)①見解析②FCFEFB

【解析】

1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ABC≌△DBE,再根據(jù)全等三角形的性質(zhì)和直角三角形的性質(zhì)即可證明;

證法一:先證明A,D,B,F四點均在以AB為直徑的圓上,再連接AD,證明ABD是等腰直角三角形即可;證法二:在DE上截取DG=AF,連接BG,根據(jù)SAS可證ABF≌△DBG,再利用全等三角形的性質(zhì)證明GBF是等腰直角三角形,問題即得解決;

2)在CF上截取CG=EF,連接BG,利用SAS可證BCG≌△BFE,再利用全等三角形的性質(zhì)證明△GBF是等腰直角三角形,進一步即可得出結(jié)論.

1證明:如圖1,∵△ABC繞點B逆時針旋轉(zhuǎn)90°DBE,由旋轉(zhuǎn)性質(zhì)得,ABC≌△DBE,

∴∠1=∠2AB=DB,∠ABC=DBE=90°

∵∠1+∠C90°,

∴∠2+∠C90°,

∴∠DFC90°,即DFAC;

解法一:如圖3,連接AD,DFACDBE=90°,∴ ∠DFA= 90°,

ADB,F四點均在以AB為直徑的圓上,

AB=DB DBE=90°,∴ DAB=45°

∴∠DFB=∠DAB45°;

解法二:如圖3,在DE上截取DG=AF,連接BG,

在△ABF和△DBG中,

∴△ABF≌△DBG,

BFBG,∠ABF=∠DBG,

∵∠DBA90°,∴∠GBF90°,

∴△GBF是等腰直角三角形,

∴∠DFB45°;

2)補全圖2,如圖4;FCFEFB

證明:如圖,在CF上截取CG=EF,連接BG

在△BCG和△BFE中,

∴△BCG≌△BFE,∴BFBG,∠CBG=∠EBF,

∵∠ABC90°,∴∠GBF90°,

∴△GBF是等腰直角三角形,

,

FCFEFCCG=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設(shè)CE=a,CF=b.

(1)如圖1,當a=4時,求b的值;

(2)當a=4時,如圖2,求出b的值;

(3)如圖3,請寫出EAF繞點A旋轉(zhuǎn)的過程中a、b滿足的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

1)畫出△ABC關(guān)于原點成中心對稱的三角形△ABC′;

2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應點B″的坐標;

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為鳳凰方程.已知鳳凰方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y =x2 + 4x + 3

1)將二次函數(shù)的表達式化為y = a (x-h)2 + k 的形式;

2)在平面直角坐標系xOy中,用描點法畫出這個二次函數(shù)的圖象;

x

y

3)觀察圖象,直接寫出當的取值范圍;

4)根據(jù)(2)中的圖象,寫出一條該二次函數(shù)的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉(zhuǎn)后得到P′AB.

(1)求點P與點P′之間的距離;

(2)求∠APB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是關(guān)于四個圖案的描述.

1所示是太極圖,俗稱陰陽魚,該圖案關(guān)于外圈大圓的圓心中心對稱;

2所示是一個正三角形內(nèi)接于圓;

3所示是一個正方形內(nèi)接于圓;

4所示是兩個同心圓,其中小圓的半徑是外圈大圓半徑的三分之二.

這四個圖案中,陰影部分的面積不小于該圖案外圈大圓面積一半的是(

A.1和圖3B.2和圖3C.2和圖4D.1和圖4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G

1觀察圖形,寫出圖中所有與AED相等的角

2選擇圖中與AED相等的任意一個角,并加以證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場要建一個飼養(yǎng)場(長方形,飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長60米,設(shè)飼養(yǎng)場(長方形的寬為米.

1)求飼養(yǎng)場的長(用含的代數(shù)式表示).

2)若飼養(yǎng)場的面積為,求的值.

3)當為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為多少?

查看答案和解析>>

同步練習冊答案