【題目】如圖,在正方形ABCD中,GCD邊中點(diǎn),連接AG并延長(zhǎng),分別交對(duì)角線BD于點(diǎn)F,交BC邊延長(zhǎng)線于點(diǎn)E.若FG2,則AE的長(zhǎng)度為( )

A. 6B. 8

C. 10D. 12

【答案】D

【解析】

根據(jù)正方形的性質(zhì)可得出ABCD,進(jìn)而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長(zhǎng)度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=12.

解:∵四邊形ABCD為正方形,

AB=CD,ABCD,

∴∠ABF=GDF,∠BAF=DGF,

∴△ABF∽△GDF,

=2,

AF=2GF=4,

AG=6

ADBC,DG=CG

=1,

AG=GE

AE=2AG=12

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的一條邊BC的長(zhǎng)為5,另兩邊AB、AC的長(zhǎng)是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根。

1)求證:無(wú)論為何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根。

2為何值時(shí),△ABC是以BC為斜邊的直角三角形。

3為何值時(shí),△ABC是等腰三角形,并求△ABC的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+cx軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論:①b>0;a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)香洲區(qū)全面推進(jìn)書(shū)香校園建設(shè)的號(hào)召,班長(zhǎng)小青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間t(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t7,B:7t14,C:14t21,D:t21),根據(jù)圖中信息,解答下列問(wèn)題:

(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);

(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書(shū)心得發(fā)言代表,請(qǐng)用列表或樹(shù)狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinA,BC8,點(diǎn)DAB的中點(diǎn),過(guò)點(diǎn)BCD的垂線,垂足為點(diǎn)E.

(1)求線段CD的長(zhǎng);

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD的延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.

(1)求證:直線BF是⊙O的切線.

(2)若CD=2,OP=1,求線段BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過(guò)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量萬(wàn)件與銷(xiāo)售單價(jià)之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價(jià)部門(mén)規(guī)定:這種電子產(chǎn)品銷(xiāo)售單價(jià)不得超過(guò)每件80元,那么,當(dāng)銷(xiāo)售單價(jià)x定為每件多少元時(shí),廠家每月獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yx2+(m2x2mm0)與x軸交于A、B兩點(diǎn)(AB左邊),與y軸交于點(diǎn)C.連接ACBC,D為拋物線上一動(dòng)點(diǎn)(DB、C兩點(diǎn)之間),ODBCE點(diǎn).

1)若△ABC的面積為8,求m的值;

2)在(1)的條件下,求的最大值;

3)如圖2,直線ykx+b與拋物線交于M、N兩點(diǎn)(M不與A重合,MN左邊),連MA,作NHx軸于H,過(guò)點(diǎn)HHPMAy軸于點(diǎn)P,PHMN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABO的直徑,AC為弦,ODBC,交ACD,BC4cm

1)求證:ACOD

2)求OD的長(zhǎng);

3)若2sinA10,求O的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案