【題目】如圖,矩形ABCD中,AB=8,BC=12,E為AD中點(diǎn),F為AB上一點(diǎn),將△AEF沿EF折疊后,點(diǎn)A恰好落到CF上的點(diǎn)G處,則折痕EF的長是_____.
【答案】.
【解析】
連接EC,構(gòu)造相似三角形△FEC∽△EDC,推出,結(jié)合勾股定理即可解得.
如圖,連接EC,
∵四邊形ABCD為矩形,
∴∠A=∠D=90°,BC=AD=12,DC=AB=8,
∵E為AD中點(diǎn),
∴AE=DE=AD=6,
由翻折知,△AEF≌△GEF,
∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,
∴GE=DE,
∴EC平分∠DCG,
∴∠DCE=∠GCE,
∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,
∴∠GEC=∠DEC,
∴∠FEC=∠FEG+∠GEC=×180°=90°,
∴∠FEC=∠D=90°,
又∵∠DCE=∠GCE,
∴△FEC∽△EDC,
∴,
∵EC==10,
∴,
∴FE=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線DE與⊙O相切于點(diǎn)C,過A,B分別作AD⊥DE,BE⊥DE,垂足為點(diǎn)D,E,連接AC,BC,若AD=,CE=3,則的長為( )
A.B.πC.πD.π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物的頂部有一塊標(biāo)識(shí)牌 CD,小明在斜坡上 B 處測得標(biāo)識(shí)牌頂部C 的仰角為 45°, 沿斜坡走下來在地面 A 處測得標(biāo)識(shí)牌底部 D 的仰角為 60°,已知斜坡 AB 的坡角為 30°,AB=AE=10 米.則標(biāo)識(shí)牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如圖1,A、D、C在同一直線上時(shí),=_______,=_______;
(2)在圖1的基礎(chǔ)上,固定△ABC,將△CDE繞C旋轉(zhuǎn)一定的角度α(0°<α<360°),如圖2,連接AD、BE.
① 的值有沒有改變?請(qǐng)說明理由.
②拓展研究:若AB=1,DE=,當(dāng) B、D、E在同一直線上時(shí),請(qǐng)計(jì)算線段AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如圖1,A、D、C在同一直線上時(shí),=_______,=_______;
(2)在圖1的基礎(chǔ)上,固定△ABC,將△CDE繞C旋轉(zhuǎn)一定的角度α(0°<α<360°),如圖2,連接AD、BE.
① 的值有沒有改變?請(qǐng)說明理由.
②拓展研究:若AB=1,DE=,當(dāng) B、D、E在同一直線上時(shí),請(qǐng)計(jì)算線段AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(6,0),B(4,3),C(0,3).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位長度的速度沿邊OA向終點(diǎn)A運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度沿邊BC向終點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,PQ2=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=時(shí),求t的值;
(3)連接OB交PQ于點(diǎn)D,若雙曲線(k≠0)經(jīng)過點(diǎn)D,問k的值是否變化?若不變化,請(qǐng)求出k的值;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是垂直于水平面的建筑物.為測量AB的高度,小紅從建筑物底端B點(diǎn)出發(fā),沿水平方向行走了52米到達(dá)點(diǎn)C,然后沿斜坡CD前進(jìn),到達(dá)坡頂D點(diǎn)處,.在點(diǎn)D處放置測角儀,測角儀支架DE高度為0.8米,在E點(diǎn)處測得建筑物頂端A點(diǎn)的仰角為(點(diǎn)A,B,C,D,E在同一平面內(nèi)).斜坡CD的坡度(或坡比),那么建筑物AB的高度約為( )
(參考數(shù)據(jù),,)
A.65.8米B.71.8米C.73.8米D.119.8米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com