已知A(1,5),B(3,-1)兩點(diǎn),在x軸上取一點(diǎn)M,使AM-BM取得最大值時,則M的坐標(biāo)為______.
【答案】
分析:作點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′,連接AB′并延長與x軸的交點(diǎn),即為所求的M點(diǎn).利用待定系數(shù)法求出直線AB′的解析式,然后求出其與x軸交點(diǎn)的坐標(biāo),即M點(diǎn)的坐標(biāo).
解答:解:如圖,作點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′,連接AB′并延長與x軸的交點(diǎn),即為所求的M點(diǎn).此時AM-BM=AM-B′M=AB′.
不妨在x軸上任取一個另一點(diǎn)M′,連接M′A、M′B、M′B′.
則M′A-M′B=M′A-M′B′<AB′(三角形兩邊之差小于第三邊).
∴M′A-M′B<AM-BM,即此時AM-BM最大.
∵B′是B(3,-1)關(guān)于x軸的對稱點(diǎn),∴B′(3,1).
設(shè)直線AB′解析式為y=kx+b,把A(1,5)和B′(3,1)代入得:
,解得
,
∴直線AB′解析式為y=-2x+7.
令y=0,解得x=
,
∴M點(diǎn)坐標(biāo)為(
,0).
故答案為:(
,0).
點(diǎn)評:本題可能感覺無從下手,主要原因是平時習(xí)慣了線段之和最小的問題,突然碰到線段之差最大的問題感覺一籌莫展.其實(shí)兩類問題本質(zhì)上是相通的,前者是通過對稱轉(zhuǎn)化為“兩點(diǎn)之間線段最短”問題,而后者(本題)是通過對稱轉(zhuǎn)化為“三角形兩邊之差小于第三邊”問題.可見學(xué)習(xí)知識要活學(xué)活用,靈活變通.