已知A(1,5),B(3,-1)兩點(diǎn),在x軸上取一點(diǎn)M,使AM-BM取得最大值時,則M的坐標(biāo)為______.
【答案】分析:作點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′,連接AB′并延長與x軸的交點(diǎn),即為所求的M點(diǎn).利用待定系數(shù)法求出直線AB′的解析式,然后求出其與x軸交點(diǎn)的坐標(biāo),即M點(diǎn)的坐標(biāo).
解答:解:如圖,作點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′,連接AB′并延長與x軸的交點(diǎn),即為所求的M點(diǎn).此時AM-BM=AM-B′M=AB′.
不妨在x軸上任取一個另一點(diǎn)M′,連接M′A、M′B、M′B′.
則M′A-M′B=M′A-M′B′<AB′(三角形兩邊之差小于第三邊).
∴M′A-M′B<AM-BM,即此時AM-BM最大.
∵B′是B(3,-1)關(guān)于x軸的對稱點(diǎn),∴B′(3,1).
設(shè)直線AB′解析式為y=kx+b,把A(1,5)和B′(3,1)代入得:
,解得,
∴直線AB′解析式為y=-2x+7.
令y=0,解得x=,
∴M點(diǎn)坐標(biāo)為(,0).
故答案為:(,0).
點(diǎn)評:本題可能感覺無從下手,主要原因是平時習(xí)慣了線段之和最小的問題,突然碰到線段之差最大的問題感覺一籌莫展.其實(shí)兩類問題本質(zhì)上是相通的,前者是通過對稱轉(zhuǎn)化為“兩點(diǎn)之間線段最短”問題,而后者(本題)是通過對稱轉(zhuǎn)化為“三角形兩邊之差小于第三邊”問題.可見學(xué)習(xí)知識要活學(xué)活用,靈活變通.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖為某班35名學(xué)生在某次社會實(shí)踐活動中揀廢棄的礦泉水瓶情況條形統(tǒng)計圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動中學(xué)生揀到礦泉水瓶個數(shù)中位數(shù)是5個,則根據(jù)統(tǒng)計圖,下列選項中的(  )數(shù)值無法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點(diǎn)A的橫坐標(biāo)為2,點(diǎn)C的橫坐標(biāo)為-
3
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a、b(a≠b)分別滿足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊答案