【題目】入學(xué)考試前,某語(yǔ)文老師為了了解所任教的甲、乙兩班學(xué)生假期向的語(yǔ)文基礎(chǔ)知識(shí)背誦情況,對(duì)兩個(gè)班的學(xué)生進(jìn)行了語(yǔ)文基礎(chǔ)知識(shí)背誦檢測(cè),滿分100分.現(xiàn)從兩個(gè)班分別隨機(jī)抽取了20名學(xué)生的檢測(cè)成績(jī)進(jìn)行整理,描述和分析(成績(jī)得分用x表示,共分為五組:
A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面給出了部分信息:
甲班20名學(xué)生的成績(jī)?yōu)椋?/span>
甲組 | 82 | 85 | 96 | 73 | 91 | 99 | 87 | 91 | 86 | 91 |
87 | 94 | 89 | 96 | 96 | 91 | 100 | 93 | 94 | 99 |
乙班20名學(xué)生的成績(jī)?cè)?/span>D組中的數(shù)據(jù)是:93,91,92,94,92,92,92
甲、乙兩班抽取的學(xué)生成績(jī)數(shù)據(jù)統(tǒng)計(jì)表
班級(jí) | 甲組 | 乙組 |
平均數(shù) | 91 | 92 |
中位數(shù) | 91 | b |
眾數(shù) | c | 92 |
方差 | 41.2 | 27.3 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中a,b,c的值:a= ;b= ;c= ;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙兩個(gè)班中哪個(gè)班的學(xué)生基礎(chǔ)知識(shí)背誦情況較好?請(qǐng)說明理由(一條理由即可);
(3)若甲、乙兩班總?cè)藬?shù)為125,且都參加了此次基礎(chǔ)知識(shí)檢測(cè),估計(jì)此次檢測(cè)成績(jī)優(yōu)秀(x≥95)的學(xué)生人數(shù)是多少?
【答案】(1)40,92.5,91;(2)乙班,乙班的平均分,中位數(shù)都高于甲班;(3)44
【解析】
(1)根據(jù)D組數(shù)據(jù)求得D組所占的百分比求出,根據(jù)中位數(shù)和眾數(shù)的概念求出;
(2)根據(jù)平均數(shù)和中位數(shù)的性質(zhì)解答;
(3)用樣本估計(jì)總體,得到答案.
(1)1﹣5%﹣10%﹣10%﹣=40%,
∴=40;
由統(tǒng)計(jì)表中的數(shù)據(jù)可知b==92.5,
成績(jī)?yōu)?/span>91的在甲班20名學(xué)生的成績(jī)中出現(xiàn)了4次,最多,∴c=91;
故答案為:40,92.5,91;
(2)乙班的學(xué)生基礎(chǔ)知識(shí)背誦情況較好,理由:乙班的平均分,中位數(shù)都高于甲班;
(3)甲班20名學(xué)生中成績(jī)優(yōu)秀(x≥95)的學(xué)生人數(shù)有:6人,
乙班20名學(xué)生中成績(jī)優(yōu)秀(x≥95)的學(xué)生人數(shù)有:人,
∴125×≈44,
答:估計(jì)此次檢測(cè)成績(jī)優(yōu)秀(x≥95)的學(xué)生人數(shù)是44人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=3,AD=5,AE平分∠BAD,交BC于F,交DC延長(zhǎng)線于E,則的值為( )
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以的邊為直徑作,點(diǎn)C在上,是的弦,,過點(diǎn)C作于點(diǎn)F,交于點(diǎn)G,過C作交的延長(zhǎng)線于點(diǎn)E.
(1)求證:是的切線;
(2)求證:;
(3)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限的交點(diǎn)為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)當(dāng)x>0時(shí),比較kx+b與的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)y=(x>0)的圖象上從左向右運(yùn)動(dòng),PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點(diǎn)A,AB∥x軸交PO的延長(zhǎng)線于點(diǎn)B,則△PAB的面積( 。
A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AC:y=﹣3x+3與直線AB:y=ax+b交于點(diǎn)A,且B(﹣9,0).
(1)若F是第二象限位于直線AB上方的一點(diǎn),過F作FE⊥AB于E,過F作FD∥y軸交直線AB于D,D為AB中點(diǎn),其中△DFF的周長(zhǎng)是12+4,若M為線段AC上一動(dòng)點(diǎn),連接EM,求EM+MC的最小值,此時(shí)y軸上有一個(gè)動(dòng)點(diǎn)G,當(dāng)|BG﹣MG|最大時(shí),求G點(diǎn)坐標(biāo);
(2)在(1)的情況下,將△AOC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)60°后得到△A′OC',如圖2,將線段OA′沿著x軸平移,記平移過程中的線段OA′為O′A″,在平面直角坐標(biāo)系中是否存在點(diǎn)P,使得以點(diǎn)O′,A″,E,P為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且∠AFE=∠A,DM∥EF交AC于點(diǎn)M.
(1)求證:DM=DA;
(2)點(diǎn)G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
(3)在圖②中,取CE上一點(diǎn)H,使∠CFH=∠B,若BG=1,求EH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90o,以BC為直徑的半圓⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn),連接DE并延長(zhǎng),交CB延長(zhǎng)線于點(diǎn)F.
(1)判斷直線DF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=8,DF=4,求⊙O的半徑和AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AC=6,BD=8.點(diǎn)E是AB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BC、CD、AD上.設(shè) AE=m.
(1)如圖①,當(dāng)m=1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com